Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
Offering nearly 7000 references-3900 more than the first edition-Polymeric Biomaterials, Second Edition is an up-to-the-minute source for plastics and biomedical engineers, polymer scientists, biochemists, molecular biologists, macromolecular chemists, pharmacists, cardiovascular and plastic surgeons, and graduate and medical students in these disciplines. Completely revised and updated, it includes coverage of genetic engineering, synthesis of biodegradable polymers, hydrogels, and mucoadhesive polymers, as well as polymers for dermacosmetic treatments, burn and wound dressings, orthopedic surgery, artificial joints, vascular prostheses, and in blood contacting systems.
Biomaterials have had a major impact on the practice of contemporary medicine and patient care. Growing into a major interdisciplinary effort involving chemists, biologists, engineers, and physicians, biomaterials development has enabled the creation of high-quality devices, implants, and drug carriers with greater biocompatibility and biofunctionality. The fast-paced research and increasing interest in finding new and improved biocompatible or biodegradable polymers has provided a wealth of new information, transforming this edition of Polymeric Biomaterials into a two-volume set. This volume, Polymeric Biomaterials: Structure and Function, contains 25 authoritative chapters written by experts from around the world. Contributors cover the following topics: The structure and properties of synthetic polymers including polyesters, polyphosphazenes, and elastomers The structure and properties of natural polymers such as mucoadhesives, chitin, lignin, and carbohydrate derivatives Blends and composites-for example, metal-polymer composites and biodegradable polymeric/ceramic composites Bioresorbable hybrid membranes, drug delivery systems, cell bioassay systems, electrospinning for regenerative medicine, and more Completely revised and expanded, this state-of-the-art reference presents recent developments in polymeric biomaterials: from their chemical, physical, and structural properties to polymer synthesis and processing techniques and current applications in the medical and pharmaceutical fields.
Integrates the latest advances in polysaccharide chemistry and structure analysis, with the practical applications of polysaccharides in medicine and pharmacy, highlighting the role of glycoconjugates in basic biological processes and immunology. It also presents recent developments in glycobiology and glycopathology. The work covers bacterial, fungal and cell-wall polysaccharides, microbial and bacterial exopolysaccharides, industrial gums, the biosynthesis of bacterial polysaccharides, and the production of microbial polysaccharides.
Biomaterials have had a major impact on the practice of contemporary medicine and patient care. Growing into a major interdisciplinary effort involving chemists, biologists, engineers, and physicians, biomaterials development has enabled the creation of high-quality devices, implants, and drug carriers with greater biocompatibility and biofunctionality. The fast-paced research and increasing interest in finding new and improved biocompatible or biodegradable polymers has provided a wealth of new information, transforming this edition of Polymeric Biomaterials into a two-volume set. This volume, Polymeric Biomaterials: Medicinal and Pharmaceutical Applications, contains 28 authoritative chapters written by experts from around the world. Contributors cover the following topics: Processing polymeric biomaterials into specific forms that ensure biocompatibility and biodegradability for use in various applications in the medical and pharmaceutical arenas Use of biomaterials to address medical issues such as pulmonary disease, cancer, heart disease, tissue damage, and bone disease Applications including a variety of drug delivery systems, medical devices, anticancer therapies, biological uses for hydrogels, nanotechnology, bioartificial organs, and tissue engineering Completely revised and expanded, this state-of-the-art reference presents recent developments in polymeric biomaterials and the most up-to-date applications of biomaterials in medicine.
Biomaterials have had a major impact on the practice of contemporary medicine and patient care. Growing into a major interdisciplinary effort involving chemists, biologists, engineers, and physicians, biomaterials development has enabled the creation of high-quality devices, implants, and drug carriers with greater biocompatibility and biofunctionality. The fast-paced research and increasing interest in finding new and improved biocompatible or biodegradable polymers has provided a wealth of new information, transforming this edition of Polymeric Biomaterials into a two-volume set. This volume, Polymeric Biomaterials: Structure and Function, contains 25 authoritative chapters written by experts from around the world. Contributors cover the following topics: The structure and properties of synthetic polymers including polyesters, polyphosphazenes, and elastomers The structure and properties of natural polymers such as mucoadhesives, chitin, lignin, and carbohydrate derivatives Blends and composites-for example, metal-polymer composites and biodegradable polymeric/ceramic composites Bioresorbable hybrid membranes, drug delivery systems, cell bioassay systems, electrospinning for regenerative medicine, and more Completely revised and expanded, this state-of-the-art reference presents recent developments in polymeric biomaterials: from their chemical, physical, and structural properties to polymer synthesis and processing techniques and current applications in the medical and pharmaceutical fields.
Biomaterials have had a major impact on the practice of
contemporary medicine and patient care. Growing into a major
interdisciplinary effort involving chemists, biologists, engineers,
and physicians, biomaterials development has enabled the creation
of high-quality devices, implants, and drug carriers with greater
biocompatibility and biofunctionality. The fast-paced research and
increasing interest in finding new and improved biocompatible or
biodegradable polymers has provided a wealth of new information,
transforming this edition of Polymeric Biomaterials into a
two-volume set. Completely revised and expanded, this
state-of-the-art reference presents recent developments in
polymeric biomaterials: from their chemical, physical, and
structural properties to current applications in the medical and
pharmaceutical fields.
Completely revised and expanded to reflect the latest advancements in the field, Polysaccharides: Structural Diversity and Functional Versatility, Second Edition outlines fundamental concepts in the structure, function, chemistry, and stability of polysaccharides and reveals new analytical techniques and applications currently impacting the cosmetic, medicinal, chemical, and biochemical industries. The authoritative book discusses polysaccharides utilized in medical applications such as polysaccharide-based hydrogels, polysialic acids, proteoglycans, glycolipids, and anticoagulant polysaccharides; renewable resources for the production of various industrial chemicals and engineering plastics polysaccharides; and more.
Biomaterials have had a major impact on the practice of contemporary medicine and patient care. Growing into a major interdisciplinary effort involving chemists, biologists, engineers, and physicians, biomaterials development has enabled the creation of high-quality devices, implants, and drug carriers with greater biocompatibility and biofunctionality. The fast-paced research and increasing interest in finding new and improved biocompatible or biodegradable polymers has provided a wealth of new information, transforming this edition of Polymeric Biomaterials into a two-volume set. This volume, Polymeric Biomaterials: Medicinal and Pharmaceutical Applications, contains 28 authoritative chapters written by experts from around the world. Contributors cover the following topics: Processing polymeric biomaterials into specific forms that ensure biocompatibility and biodegradability for use in various applications in the medical and pharmaceutical arenas Use of biomaterials to address medical issues such as pulmonary disease, cancer, heart disease, tissue damage, and bone disease Applications including a variety of drug delivery systems, medical devices, anticancer therapies, biological uses for hydrogels, nanotechnology, bioartificial organs, and tissue engineering Completely revised and expanded, this state-of-the-art reference presents recent developments in polymeric biomaterials and the most up-to-date applications of biomaterials in medicine.
|
You may like...
|