Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 15 of 15 matches in All Departments
This book presents select papers from 3rd EAI International Conference on Computational Intelligence and Communications (CICom 2022). The papers reveal recent advances in the broader domains of Computational Intelligence including (1) automation, control, and intelligent transportation system, (2) big data, internet of things, and smart cities, (3) wireless communication systems and cyber security and (4) human/brain-computer interfaces, and image and pattern recognition. The book demonstrates complex real-world problems in which mathematical or traditional modellings are not the preferred solution, hence alternative solutions are needed. This collection of applications demonstrates the important advances in computational intelligence. The book chapters’ present various ideas that will benefit researchers, graduate students and engineers in this domain.
This book provides an in-depth analysis of the current evolutionary clustering techniques. It discusses the most highly regarded methods for data clustering. The book provides literature reviews about single objective and multi-objective evolutionary clustering algorithms. In addition, the book provides a comprehensive review of the fitness functions and evaluation measures that are used in most of evolutionary clustering algorithms. Furthermore, it provides a conceptual analysis including definition, validation and quality measures, applications, and implementations for data clustering using classical and modern nature-inspired techniques. It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization. The book also covers applications of evolutionary data clustering in diverse fields such as image segmentation, medical applications, and pavement infrastructure asset management.
This book provides an in-depth analysis of the current evolutionary machine learning techniques. Discussing the most highly regarded methods for classification, clustering, regression, and prediction, it includes techniques such as support vector machines, extreme learning machines, evolutionary feature selection, artificial neural networks including feed-forward neural networks, multi-layer perceptron, probabilistic neural networks, self-optimizing neural networks, radial basis function networks, recurrent neural networks, spiking neural networks, neuro-fuzzy networks, modular neural networks, physical neural networks, and deep neural networks. The book provides essential definitions, literature reviews, and the training algorithms for machine learning using classical and modern nature-inspired techniques. It also investigates the pros and cons of classical training algorithms. It features a range of proven and recent nature-inspired algorithms used to train different types of artificial neural networks, including genetic algorithm, ant colony optimization, particle swarm optimization, grey wolf optimizer, whale optimization algorithm, ant lion optimizer, moth flame algorithm, dragonfly algorithm, salp swarm algorithm, multi-verse optimizer, and sine cosine algorithm. The book also covers applications of the improved artificial neural networks to solve classification, clustering, prediction and regression problems in diverse fields.
This book covers the conventional and most recent theories and applications in the area of evolutionary algorithms, swarm intelligence, and meta-heuristics. Each chapter offers a comprehensive description of a specific algorithm, from the mathematical model to its practical application. Different kind of optimization problems are solved in this book, including those related to path planning, image processing, hand gesture detection, among others. All in all, the book offers a tutorial on how to design, adapt, and evaluate evolutionary algorithms. Source codes for most of the proposed techniques have been included as supplementary materials on a dedicated webpage.
This book introduces readers to the fundamentals of artificial neural networks, with a special emphasis on evolutionary algorithms. At first, the book offers a literature review of several well-regarded evolutionary algorithms, including particle swarm and ant colony optimization, genetic algorithms and biogeography-based optimization. It then proposes evolutionary version of several types of neural networks such as feed forward neural networks, radial basis function networks, as well as recurrent neural networks and multi-later perceptron. Most of the challenges that have to be addressed when training artificial neural networks using evolutionary algorithms are discussed in detail. The book also demonstrates the application of the proposed algorithms for several purposes such as classification, clustering, approximation, and prediction problems. It provides a tutorial on how to design, adapt, and evaluate artificial neural networks as well, and includes source codes for most of the proposed techniques as supplementary materials.
Swarm Intelligence (SI) has grown significantly, both from the perspective of algorithmic development and applications covering almost all disciplines science and technology. This book emphasizes the studies of existing SI techniques, their variants and applications. The book also contains reviews of new developments in SI techniques and hybridizations. Algorithm specific studies covering basic introduction and analysis of key components of these algorithms, such as convergence, balance of solution accuracy, computational costs, tuning and control of parameters. Application specific studies incorporating the ways of designing objective functions, solution representation and constraint handling. The book also includes studies on application domain specific adaptations in the SI techniques. The book will be beneficial for academicians and researchers from various disciplines of engineering and science working in applications of SI and other optimization problems.
Reviews the literature of the Moth-Flame Optimization algorithm; Provides an in-depth analysis of equations, mathematical models, and mechanisms of the Moth-Flame Optimization algorithm; Proposes different variants of the Moth-Flame Optimization algorithm to solve binary, multi-objective, noisy, dynamic, and combinatorial optimization problems; Demonstrates how to design, develop, and test different hybrids of Moth-Flame Optimization algorithm; Introduces several applications areas of the Moth-Flame Optimization algorithm focusing in sustainability.
This book provides an in-depth analysis of the current evolutionary clustering techniques. It discusses the most highly regarded methods for data clustering. The book provides literature reviews about single objective and multi-objective evolutionary clustering algorithms. In addition, the book provides a comprehensive review of the fitness functions and evaluation measures that are used in most of evolutionary clustering algorithms. Furthermore, it provides a conceptual analysis including definition, validation and quality measures, applications, and implementations for data clustering using classical and modern nature-inspired techniques. It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization. The book also covers applications of evolutionary data clustering in diverse fields such as image segmentation, medical applications, and pavement infrastructure asset management.
This book provides an in-depth analysis of the current evolutionary machine learning techniques. Discussing the most highly regarded methods for classification, clustering, regression, and prediction, it includes techniques such as support vector machines, extreme learning machines, evolutionary feature selection, artificial neural networks including feed-forward neural networks, multi-layer perceptron, probabilistic neural networks, self-optimizing neural networks, radial basis function networks, recurrent neural networks, spiking neural networks, neuro-fuzzy networks, modular neural networks, physical neural networks, and deep neural networks. The book provides essential definitions, literature reviews, and the training algorithms for machine learning using classical and modern nature-inspired techniques. It also investigates the pros and cons of classical training algorithms. It features a range of proven and recent nature-inspired algorithms used to train different types of artificial neural networks, including genetic algorithm, ant colony optimization, particle swarm optimization, grey wolf optimizer, whale optimization algorithm, ant lion optimizer, moth flame algorithm, dragonfly algorithm, salp swarm algorithm, multi-verse optimizer, and sine cosine algorithm. The book also covers applications of the improved artificial neural networks to solve classification, clustering, prediction and regression problems in diverse fields.
This book covers the conventional and most recent theories and applications in the area of evolutionary algorithms, swarm intelligence, and meta-heuristics. Each chapter offers a comprehensive description of a specific algorithm, from the mathematical model to its practical application. Different kind of optimization problems are solved in this book, including those related to path planning, image processing, hand gesture detection, among others. All in all, the book offers a tutorial on how to design, adapt, and evaluate evolutionary algorithms. Source codes for most of the proposed techniques have been included as supplementary materials on a dedicated webpage.
This book focuses on the most well-regarded and recent nature-inspired algorithms capable of solving optimization problems with multiple objectives. Firstly, it provides preliminaries and essential definitions in multi-objective problems and different paradigms to solve them. It then presents an in-depth explanations of the theory, literature review, and applications of several widely-used algorithms, such as Multi-objective Particle Swarm Optimizer, Multi-Objective Genetic Algorithm and Multi-objective GreyWolf Optimizer Due to the simplicity of the techniques and flexibility, readers from any field of study can employ them for solving multi-objective optimization problem. The book provides the source codes for all the proposed algorithms on a dedicated webpage.
Handbook of Whale Optimization Algorithm: Variants, Hybrids, Improvements, and Applications provides the most in-depth look at an emerging meta-heuristic that has been widely used in both science and industry. Whale Optimization Algorithm has been cited more than 5000 times in Google Scholar, thus solving optimization problems using this algorithm requires addressing a number of challenges including multiple objectives, constraints, binary decision variables, large-scale search space, dynamic objective function, and noisy parameters to name a few. This handbook provides readers with in-depth analysis of this algorithm and existing methods in the literature to cope with such challenges. The authors and editors also propose several improvements, variants and hybrids of this algorithm. Several applications are also covered to demonstrate the applicability of methods in this book.
This book introduces readers to the fundamentals of artificial neural networks, with a special emphasis on evolutionary algorithms. At first, the book offers a literature review of several well-regarded evolutionary algorithms, including particle swarm and ant colony optimization, genetic algorithms and biogeography-based optimization. It then proposes evolutionary version of several types of neural networks such as feed forward neural networks, radial basis function networks, as well as recurrent neural networks and multi-later perceptron. Most of the challenges that have to be addressed when training artificial neural networks using evolutionary algorithms are discussed in detail. The book also demonstrates the application of the proposed algorithms for several purposes such as classification, clustering, approximation, and prediction problems. It provides a tutorial on how to design, adapt, and evaluate artificial neural networks as well, and includes source codes for most of the proposed techniques as supplementary materials.
This book is a collection of best selected research papers presented at the International Conference on Communication and Artificial Intelligence (ICCAI 2021), held in the Department of Electronics & Communication Engineering, GLA University, Mathura, India, during 19-20 November 2021. The primary focus of the book is on the research information related to artificial intelligence, networks, and smart systems applied in the areas of industries, government sectors, and educational institutions worldwide. Diverse themes with a central idea of sustainable networking solutions are discussed in the book. The book presents innovative work by leading academics, researchers, and experts from industry.
This book comprises the proceedings of the International Conference on Intelligent Systems and Applications (ICISA 2022). The contents of this volume focus on novel and modified artificial intelligence and machine learning-based methods and their applications in robotics, pharmaceutics, banking & finance, agriculture, food processing, crime prevention, smart homes, transportation, traffic control, and wildlife conservation, etc. This volume will prove a valuable resource for those in academia and industry.
|
You may like...
Ten Years after Katrina - Critical…
Mary Ruth Marotte, Glenn Jellenik
Hardcover
R2,726
Discovery Miles 27 260
|