![]() |
![]() |
Your cart is empty |
||
Showing 1 - 9 of 9 matches in All Departments
The study of electromagnetic field theory is required for proper understanding of every device wherein electricity is used for operation. The proposed textbook on electromagnetic fields covers all the generic and unconventional topics including electrostatic boundary value problems involving two- and three-dimensional Laplacian fields and one- and two- dimensional Poissonion fields, magnetostatic boundary value problems, eddy currents, and electromagnetic compatibility. The subject matter is supported by practical applications, illustrations to supplement the theory, solved numerical problems, solutions manual and Powerpoint slides including appendices and mathematical relations. Aimed at undergraduate, senior undergraduate students of electrical and electronics engineering, it: Presents fundamental concepts of electromagnetic fields in a simplified manner Covers one two- and three-dimensional electrostatic boundary value problems involving Laplacian fields and Poissonion fields Includes exclusive chapters on eddy currents and electromagnetic compatibility Discusses important aspects of magneto static boundary value problems Explores all the basic vector algebra and vector calculus along with couple of two- and three-dimensional problems
Electromagnetics for Electrical Machines offers a comprehensive yet accessible treatment of the linear theory of electromagnetics and its application to the design of electrical machines. Leveraging valuable classroom insight gained by the authors during their impressive and ongoing teaching careers, this text emphasizes concepts rather than numerical methods, providing presentation/project problems at the end of each chapter to enhance subject knowledge. Highlighting the essence of electromagnetic field (EMF) theory and its correlation with electrical machines, this book: Reviews Maxwell's equations and scalar and vector potentials Describes the special cases leading to the Laplace, Poisson's, eddy current, and wave equations Explores the utility of the uniqueness, generalized Poynting, Helmholtz, and approximation theorems Discusses the Schwarz-Christoffel transformation, as well as the determination of airgap permeance Addresses the skin effects in circular conductors and eddy currents in solid and laminated iron cores Contains examples relating to the slot leakage inductance of rotating electrical machines, transformer leakage inductance, and theory of hysteresis machines Presents analyses of EMFs in laminated-rotor induction machines, three-dimensional field analyses for three-phase solid rotor induction machines, and more Electromagnetics for Electrical Machines makes an ideal text for postgraduate-level students of electrical engineering, as well as of physics and electronics and communication engineering. It is also a useful reference for research scholars concerned with problems involving electromagnetics.
The fields of Big Data and the Internet of Things (IoT) have seen tremendous advances, developments, and growth in recent years. The IoT is the inter-networking of connected smart devices, buildings, vehicles and other items which are embedded with electronics, software, sensors and actuators, and network connectivity that enable these objects to collect and exchange data. The IoT produces a lot of data. Big data describes very large and complex data sets that traditional data processing application software is inadequate to deal with, and the use of analytical methods to extract value from data. This edited book covers analytical techniques for handling the huge amount of data generated by the Internet of Things, from architectures and platforms to security and privacy issues, applications, and challenges as well as future directions.
The study of electromagnetic field theory is required for proper understanding of every device wherein electricity is used for operation. The proposed textbook on electromagnetic fields covers all the generic and unconventional topics including electrostatic boundary value problems involving two- and three-dimensional Laplacian fields and one- and two- dimensional Poissonion fields, magnetostatic boundary value problems, eddy currents, and electromagnetic compatibility. The subject matter is supported by practical applications, illustrations to supplement the theory, solved numerical problems, solutions manual and Powerpoint slides including appendices and mathematical relations. Aimed at undergraduate, senior undergraduate students of electrical and electronics engineering, it: Presents fundamental concepts of electromagnetic fields in a simplified manner Covers one two- and three-dimensional electrostatic boundary value problems involving Laplacian fields and Poissonion fields Includes exclusive chapters on eddy currents and electromagnetic compatibility Discusses important aspects of magneto static boundary value problems Explores all the basic vector algebra and vector calculus along with couple of two- and three-dimensional problems
The world focusses on the gory aspects of the war on terror, unmindful of a far more insidious form of combat taking place elsewhere. It is an unglamorous but far more deadly war; the warriors are pieces of digital code and the battlefield is Cyberspace. E-Jihad is the story of that conflict. It traces the origin of this form of warfare to the very same location from where the first computer virus emerged; Pakistan. Unlike the virus which was just a juvenile prank, the new code is designed for a specific purpose; to fight evil. It is Jihad in its pristine form. This is not a book, it is a magical flying carpet woven in words. Climb aboard for an amazing journey across the world crisscrossing Pakistan, Afghanistan, Europe, America, Asia and the Middle East. As you travel this wondrous, convoluted route, learn how the first digital warrior was deployed on the World Wide Web. Gain a stunning insight into net-centric warfare and its evolution. Learn about Islam, Muslims, Jihad and how the nature of War has changed. E-Jihad is a work of fiction. You may elect to believe otherwise.
Detailing the active and passive aspects of microwaves, Microwave Engineering: Concepts and Fundamentals covers everything from wave propagation to reflection and refraction, guided waves, and transmission lines, providing a comprehensive understanding of the underlying principles at the core of microwave engineering. This encyclopedic text not only encompasses nearly all facets of microwave engineering, but also gives all topics including microwave generation, measurement, and processing equal emphasis. Packed with illustrations to aid in comprehension, the book:
Based on the author s own class notes, Microwave Engineering: Concepts and Fundamentals consists of 16 chapters featuring homework problems, references, and numerical examples. PowerPoint(r) slides and MATLAB(r)-based solutions are available with qualifying course adoption."
Electromagnetics for Electrical Machines offers a comprehensive yet accessible treatment of the linear theory of electromagnetics and its application to the design of electrical machines. Leveraging valuable classroom insight gained by the authors during their impressive and ongoing teaching careers, this text emphasizes concepts rather than numerical methods, providing presentation/project problems at the end of each chapter to enhance subject knowledge. Highlighting the essence of electromagnetic field (EMF) theory and its correlation with electrical machines, this book: Reviews Maxwell's equations and scalar and vector potentials Describes the special cases leading to the Laplace, Poisson's, eddy current, and wave equations Explores the utility of the uniqueness, generalized Poynting, Helmholtz, and approximation theorems Discusses the Schwarz-Christoffel transformation, as well as the determination of airgap permeance Addresses the skin effects in circular conductors and eddy currents in solid and laminated iron cores Contains examples relating to the slot leakage inductance of rotating electrical machines, transformer leakage inductance, and theory of hysteresis machines Presents analyses of EMFs in laminated-rotor induction machines, three-dimensional field analyses for three-phase solid rotor induction machines, and more Electromagnetics for Electrical Machines makes an ideal text for postgraduate-level students of electrical engineering, as well as of physics and electronics and communication engineering. It is also a useful reference for research scholars concerned with problems involving electromagnetics.
|
![]() ![]() You may like...
Fast & Furious: 8-Film Collection
Vin Diesel, Paul Walker, …
Blu-ray disc
|