Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This book updates and expands on various aspects of the vasculature's microenvironment and how these regulate differentiation and assembly. Discussed in this new edition are efforts to capitalize on combing engineering techniques, to study and manipulate various biophysical cues, including: endothelial cell- pericyte interactions (Davis), mechanical forces to regulate vascularization in three-dimensional constructs (Levenberg), how matrix properties and oxygen tension regulate vascular fate and assembly (Gerecht), biophysical cues in relation to vascular aging (Ferreira), 3D printing of complex vascularized tissue (Hibino), the harnessing of biophysical cues for therapeutic vasculature interfacing with the damaged brain (Segura) and finally, the infarcted heart (Grayson). This second edition of Biophysical Regulation of Vascular Differentiation and Assembly provides an interdisciplinary view of vasculature regulation thru various biophysical cues and presents recent advances in measuring and controlling such parameters. This book will be of interest to biologists, biophysicists and engineers who work with vascular differentiation and assembly.
This book presents an Assessment of Physical Sciences and Engineering Advances in Life Sciences and Oncology (APHELION) by a panel of experts. It covers the status and trends of applying physical sciences and engineering principles to oncology research in leading laboratories and organizations in Europe and Asia. The book elaborates on the six topics identified by the panel that have the greatest potential to advance understanding and treatment of cancer, each covered by a chapter in the book. The study was sponsored by the National Cancer Institute (NCI) at the National Institute of Health (NIH), the National Science Foundation (NSF) and the National Institute of Biomedical Imaging and Bioengineering at the NIH in the US under a cooperative agreement with the World Technology Evaluation Center (WTEC).
Modern mechanobiology converges both engineering and medicine to address personalized medicine. This book is built on the previously well-received edition, Hemodynamics and Mechanobiology of Endothelium. The central theme is "omic" approaches to mechanosignal transduction underlying tissue development, injury, and repair. A cadre of investigators has contributed to the chapters, enriching the interface between mechanobiology and precision medicine for personalized diagnosis and intervention. The book begins with the fundamental basis of vascular disease in response to hemodynamic shear stress and then details cardiovascular development and regeneration, valvular and cardiac morphogenesis, mechanosensitive microRNA and histone unfolding, computational fluid dynamics, and light-sheet imaging. This edition represents a paradigm shift from traditional biomechanics and signal transduction to transgenic models, including novel zebrafish and chick embryos, and targets a wider readership from academia to industry and government agencies in the field of mechanobiology.
Because of their ability to differentiate and develop into functional vasculature, stem cells hold tremendous promise for therapeutic applications. However, the scientific understanding and the ability to engineer these cellular systems is still in its early stages, and must advance significantly for the therapeutic potential of stem cells to be realized. Stem cell differentiation and function are exquisitely tuned by their microenvironment. This book will provide a unique perspective of how different aspect of the vasculature microenvironment regulates differentiation and assembly. Recent efforts to exploits modern engineering techniques to study and manipulate various biophysical cues will be described including: oxygen tension during adult and embryonic vasculogenesis (Semenza and Zandstra), extracellular matrix during tube morphogenesis and angiogenesis (Wirtz, Davis, Ingber), surface topography and modification (Chen and Gerecht), shear stress and cyclic strain effect on vascular assembly and maturation (Vunjak-Novakovic and Niklason), and three dimensional space for angio-andvasculogensis (Ferreria and Fischbach).
The ability to grow stem cells in the laboratory and to guide their maturation to functional cells allows us to study the underlying mechanisms that govern vasculature differentiation and assembly in health and disease. Accumulating evidence suggests that early stages of vascular growth are exquisitely tuned by biophysical cues from the microenvironment, yet the scientific understanding of such cellular environments is still in its infancy. Comprehending these processes sufficiently to manipulate them would pave the way to controlling blood vessel growth in therapeutic applications. This book assembles the works and views of experts from various disciplines to provide a unique perspective on how different aspects of its microenvironment regulate the differentiation and assembly of the vasculature. In particular, it describes recent efforts to exploit modern engineering techniques to study and manipulate various biophysical cues. Biophysical Regulation of Vascular Differentiation and Assembly provides an interdisciplinary view of vasculature regulation by various biophysical cues and presents recent advances in measuring and controlling such parameters. This book will be of interest to biologists, biophysicists and engineers who work with vascular differentiation and assembly.
|
You may like...
|