Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
The present lecture note is dedicated to the study of the optimality conditions and the duality results for nonlinear vector optimization problems, in ?nite and in?nite dimensions. The problems include are nonlinear vector optimization problems, s- metric dual problems, continuous-time vector optimization problems, relationships between vector optimization and variational inequality problems. Nonlinear vector optimization problems arise in several contexts such as in the building and interpretation of economic models; the study of various technolo- cal processes; the development of optimal choices in ?nance; management science; production processes; transportation problems and statistical decisions, etc. In preparing this lecture note a special effort has been made to obtain a se- contained treatment of the subjects; so we hope that this may be a suitable source for a beginner in this fast growing area of research, a semester graduate course in nonlinear programing, and a good reference book. This book may be useful to theoretical economists, engineers, and applied researchers involved in this area of active research. The lecture note is divided into eight chapters: Chapter 1 brie?y deals with the notion of nonlinear programing problems with basic notations and preliminaries. Chapter 2 deals with various concepts of convex sets, convex functions, invex set, invex functions, quasiinvex functions, pseudoinvex functions, type I and generalized type I functions, V-invex functions, and univex functions.
Invexity and Optimization presents results on invex function and their properties in smooth and nonsmooth cases, pseudolinearity and eta-pseudolinearity. Results on optimality and duality for a nonlinear scalar programming problem are presented, second and higher order duality results are given for a nonlinear scalar programming problem, and saddle point results are also presented. Invexity in multiobjective programming problems and Kuhn-Tucker optimality conditions are given for a multiobjecive programming problem, Wolfe and Mond-Weir type dual models are given for a multiobjective programming problem and usual duality results are presented in presence of invex functions. Continuous-time multiobjective problems are also discussed. Quadratic and fractional programming problems are given for invex functions. Symmetric duality results are also given for scalar and vector cases.
Nonconvex Optimization is a multi-disciplinary research field that deals with the characterization and computation of local/global minima/maxima of nonlinear, nonconvex, nonsmooth, discrete and continuous functions. Nonconvex optimization problems are frequently encountered in modeling real world systems for a very broad range of applications including engineering, mathematical economics, management science, financial engineering, and social science. This contributed volume consists of selected contributions from the Advanced Training Programme on Nonconvex Optimization and Its Applications held at Banaras Hindu University in March 2009. It aims to bring together new concepts, theoretical developments, and applications from these researchers. Both theoretical and applied articles are contained in this volume which adds to the state of the art research in this field. Topics in Nonconvex Optimization is suitable for advanced graduate students and researchers in this area.
V-INVEX FUNCTIONS AND VECTOR OPTIMIZATION summarizes and synthesizes an aspect of research work that has been done in the area of Generalized Convexity over the past several decades. Specifically, the book focuses on V-invex functions in vector optimization that have grown out of the work of Jeyakumar and Mond in the 1990?s. V-invex functions are areas in which there has been much interest because it allows researchers and practitioners to address and provide better solutions to problems that are nonlinear, multi-objective, fractional, and continuous in nature. Hence, V-invex functions have permitted work on a whole new class of vector optimization applications. There has been considerable work on vector optimization by some highly distinguished researchers including Kuhn, Tucker, Geoffrion, Mangasarian, Von Neuman, Schaiible, Ziemba, etc. The authors have integrated this related research into their book and demonstrate the wide context from which the area has grown and continues to grow. The result is a well-synthesized, accessible, and usable treatment for students, researchers, and practitioners in the areas of OR, optimization, applied mathematics, engineering, and their work relating to a wide range of problems which include financial institutions, logistics, transportation, traffic management, etc.
Nonconvex Optimization is a multi-disciplinary research field that deals with the characterization and computation of local/global minima/maxima of nonlinear, nonconvex, nonsmooth, discrete and continuous functions. Nonconvex optimization problems are frequently encountered in modeling real world systems for a very broad range of applications including engineering, mathematical economics, management science, financial engineering, and social science. This contributed volume consists of selected contributions from the Advanced Training Programme on Nonconvex Optimization and Its Applications held at Banaras Hindu University in March 2009. It aims to bring together new concepts, theoretical developments, and applications from these researchers. Both theoretical and applied articles are contained in this volume which adds to the state of the art research in this field. Topics in Nonconvex Optimization is suitable for advanced graduate students and researchers in this area.
This volume summarizes and synthesizes an aspect of research work that has been done in the area of Generalized Convexity over the past few decades. Specifically, the book focuses on V-invex functions in vector optimization that have grown out of the work of Jeyakumar and Mond in the 1990 s. The authors integrate related research into the book and demonstrate the wide context from which the area has grown and continues to grow.
The present lecture note is dedicated to the study of the optimality conditions and the duality results for nonlinear vector optimization problems, in ?nite and in?nite dimensions. The problems include are nonlinear vector optimization problems, s- metric dual problems, continuous-time vector optimization problems, relationships between vector optimization and variational inequality problems. Nonlinear vector optimization problems arise in several contexts such as in the building and interpretation of economic models; the study of various technolo- cal processes; the development of optimal choices in ?nance; management science; production processes; transportation problems and statistical decisions, etc. In preparing this lecture note a special effort has been made to obtain a se- contained treatment of the subjects; so we hope that this may be a suitable source for a beginner in this fast growing area of research, a semester graduate course in nonlinear programing, and a good reference book. This book may be useful to theoretical economists, engineers, and applied researchers involved in this area of active research. The lecture note is divided into eight chapters: Chapter 1 brie?y deals with the notion of nonlinear programing problems with basic notations and preliminaries. Chapter 2 deals with various concepts of convex sets, convex functions, invex set, invex functions, quasiinvex functions, pseudoinvex functions, type I and generalized type I functions, V-invex functions, and univex functions.
Invexity and Optimization presents results on invex function and their properties in smooth and nonsmooth cases, pseudolinearity and eta-pseudolinearity. Results on optimality and duality for a nonlinear scalar programming problem are presented, second and higher order duality results are given for a nonlinear scalar programming problem, and saddle point results are also presented. Invexity in multiobjective programming problems and Kuhn-Tucker optimality conditions are given for a multiobjecive programming problem, Wolfe and Mond-Weir type dual models are given for a multiobjective programming problem and usual duality results are presented in presence of invex functions. Continuous-time multiobjective problems are also discussed. Quadratic and fractional programming problems are given for invex functions. Symmetric duality results are also given for scalar and vector cases.
|
You may like...
Robert - A Queer And Crooked Memoir For…
Robert Hamblin
Paperback
(1)
Better Choices - Ensuring South Africa's…
Greg Mills, Mcebisi Jonas, …
Paperback
|