Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
The book covers several new research findings in the area of generalized convexity and integral inequalities. Integral inequalities using various type of generalized convex functions are applicable in many branches of mathematics such as mathematical analysis, fractional calculus, and discrete fractional calculus. The book contains integral inequalities of Hermite-Hadamard type, Hermite- Hadamard-Fejer type and majorization type for the generalized strongly convex functions. It presents Hermite-Hadamard type inequalities for functions defined on Time scales. Further, it provides the generalization and extensions of the concept of preinvexity for interval-valued functions and stochastic processes, and give Hermite-Hadamard type and Ostrowski type inequalities for these functions. These integral inequalities are utilized in numerous areas for the boundedness of generalized convex functions. Features: Covers Interval-valued calculus, Time scale calculus, Stochastic processes – all in one single book Numerous examples to validate results Provides an overview of the current state of integral inequalities and convexity for a much wider audience, including practitioners Applications of some special means of real numbers are also discussed The book is ideal for anyone teaching or attending courses in integral inequalities along with researchers in this area.
Pseudolinear Functions and Optimization is the first book to focus exclusively on pseudolinear functions, a class of generalized convex functions. It discusses the properties, characterizations, and applications of pseudolinear functions in nonlinear optimization problems. The book describes the characterizations of solution sets of various optimization problems. It examines multiobjective pseudolinear, multiobjective fractional pseudolinear, static minmax pseudolinear, and static minmax fractional pseudolinear optimization problems and their results. The authors extend these results to locally Lipschitz functions using Clarke subdifferentials. They also present optimality and duality results for h-pseudolinear and semi-infinite pseudolinear optimization problems. The authors go on to explore the relationships between vector variational inequalities and vector optimization problems involving pseudolinear functions. They present characterizations of solution sets of pseudolinear optimization problems on Riemannian manifolds as well as results on pseudolinearity of quadratic fractional functions. The book also extends n-pseudolinear functions to pseudolinear and n-pseudolinear fuzzy mappings and characterizations of solution sets of pseudolinear fuzzy optimization problems and n-pseudolinear fuzzy optimization problems. The text concludes with some applications of pseudolinear optimization problems to hospital management and economics. This book encompasses nearly all the published literature on the subject along with new results on semi-infinite nonlinear programming problems. It will be useful to readers from mathematical programming, industrial engineering, and operations management.
This book is based on the lecture notes of the author delivered to the students at the Institute of Science, Banaras Hindu University, India. It covers simplex, revised simplex, two-phase method, duality, dual simplex, complementary slackness, transportation and assignment problems with good number of examples, clear proofs, MATLAB codes and homework problems. The book will be useful for both students and practitioners.
This book discusses unconstrained optimization with R-a free, open-source computing environment, which works on several platforms, including Windows, Linux, and macOS. The book highlights methods such as the steepest descent method, Newton method, conjugate direction method, conjugate gradient methods, quasi-Newton methods, rank one correction formula, DFP method, BFGS method and their algorithms, convergence analysis, and proofs. Each method is accompanied by worked examples and R scripts. To help readers apply these methods in real-world situations, the book features a set of exercises at the end of each chapter. Primarily intended for graduate students of applied mathematics, operations research and statistics, it is also useful for students of mathematics, engineering, management, economics, and agriculture.
Pseudolinear Functions and Optimization is the first book to focus exclusively on pseudolinear functions, a class of generalized convex functions. It discusses the properties, characterizations, and applications of pseudolinear functions in nonlinear optimization problems. The book describes the characterizations of solution sets of various optimization problems. It examines multiobjective pseudolinear, multiobjective fractional pseudolinear, static minmax pseudolinear, and static minmax fractional pseudolinear optimization problems and their results. The authors extend these results to locally Lipschitz functions using Clarke subdifferentials. They also present optimality and duality results for h-pseudolinear and semi-infinite pseudolinear optimization problems. The authors go on to explore the relationships between vector variational inequalities and vector optimization problems involving pseudolinear functions. They present characterizations of solution sets of pseudolinear optimization problems on Riemannian manifolds as well as results on pseudolinearity of quadratic fractional functions. The book also extends n-pseudolinear functions to pseudolinear and n-pseudolinear fuzzy mappings and characterizations of solution sets of pseudolinear fuzzy optimization problems and n-pseudolinear fuzzy optimization problems. The text concludes with some applications of pseudolinear optimization problems to hospital management and economics. This book encompasses nearly all the published literature on the subject along with new results on semi-infinite nonlinear programming problems. It will be useful to readers from mathematical programming, industrial engineering, and operations management.
|
You may like...
|