0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
Status
Brand

Showing 1 - 16 of 16 matches in All Departments

Big Data 2.0 Processing Systems - A Systems Overview (Hardcover, 2nd ed. 2020): Sherif Sakr Big Data 2.0 Processing Systems - A Systems Overview (Hardcover, 2nd ed. 2020)
Sherif Sakr
R2,065 Discovery Miles 20 650 Ships in 12 - 17 working days

This book provides readers the "big picture" and a comprehensive survey of the domain of big data processing systems. For the past decade, the Hadoop framework has dominated the world of big data processing, yet recently academia and industry have started to recognize its limitations in several application domains and thus, it is now gradually being replaced by a collection of engines that are dedicated to specific verticals (e.g. structured data, graph data, and streaming data). The book explores this new wave of systems, which it refers to as Big Data 2.0 processing systems. After Chapter 1 presents the general background of the big data phenomena, Chapter 2 provides an overview of various general-purpose big data processing systems that allow their users to develop various big data processing jobs for different application domains. In turn, Chapter 3 examines various systems that have been introduced to support the SQL flavor on top of the Hadoop infrastructure and provide competing and scalable performance in the processing of large-scale structured data. Chapter 4 discusses several systems that have been designed to tackle the problem of large-scale graph processing, while the main focus of Chapter 5 is on several systems that have been designed to provide scalable solutions for processing big data streams, and on other sets of systems that have been introduced to support the development of data pipelines between various types of big data processing jobs and systems. Next, Chapter 6 focuses on covering the emerging frameworks and systems in the domain of scalable machine learning and deep learning processing. Lastly, Chapter 7 shares conclusions and an outlook on future research challenges. This new and considerably enlarged second edition not only contains the completely new chapter 6, but also offers a refreshed content for the state-of-the-art in all domains of big data processing over the last years. Overall, the book offers a valuable reference guide for professional, students, and researchers in the domain of big data processing systems. Further, its comprehensive content will hopefully encourage readers to pursue further research on the subject.

Graph Data Management - Techniques and Applications (Hardcover, New): Sherif Sakr, Eric Pardede Graph Data Management - Techniques and Applications (Hardcover, New)
Sherif Sakr, Eric Pardede
R5,282 Discovery Miles 52 820 Ships in 10 - 15 working days

Graphs are a powerful tool for representing and understanding objects and their relationships in various application domains. The growing popularity of graph databases has generated data management problems that include finding efficient techniques for compressing large graph databases and suitable techniques for visualizing, browsing, and navigating large graph databases. Graph Data Management: Techniques and Applications is a central reference source for different data management techniques for graph data structures and their application. This book discusses graphs for modeling complex structured and schemaless data from the Semantic Web, social networks, protein networks, chemical compounds, and multimedia databases and offers essential research for academics working in the interdisciplinary domains of databases, data mining, and multimedia technology.

Cloud Data Management (Hardcover, 2014 ed.): Liang Zhao, Sherif Sakr, Anna Liu, Athman Bouguettaya Cloud Data Management (Hardcover, 2014 ed.)
Liang Zhao, Sherif Sakr, Anna Liu, Athman Bouguettaya
R3,511 R1,889 Discovery Miles 18 890 Save R1,622 (46%) Ships in 12 - 17 working days

In practice, the design and architecture of a cloud varies among cloud providers. We present a generic evaluation framework for the performance, availability and reliability characteristics of various cloud platforms. We describe a generic benchmark architecture for cloud databases, specifically NoSQL database as a service. It measures the performance of replication delay and monetary cost.

Service Level Agreements (SLA) represent the contract which captures the agreed upon guarantees between a service provider and its customers. The specifications of existing service level agreements (SLA) for cloud services are not designed to flexibly handle even relatively straightforward performance and technical requirements of consumer applications. We present a novel approach for SLA-based management of cloud-hosted databases from the consumer perspective and an end-to-end framework for consumer-centric SLA management of cloud-hosted databases. The framework facilitates adaptive and dynamic provisioning of the database tier of the software applications based on application-defined policies for satisfying their own SLA performance requirements, avoiding the cost of any SLA violation and controlling the monetary cost of the allocated computing resources. In this framework, the SLA of the consumer applications are declaratively defined in terms of goals which are subjected to a number of constraints that are specific to the application requirements. The framework continuously monitors the application-defined SLA and automatically triggers the execution of necessary corrective actions (scaling out/in the database tier) when required. The framework is database platform-agnostic, uses virtualization-based database replication mechanisms and requires zero source code changes of the cloud-hosted software applications.

Handbook of Big Data Technologies (Hardcover, 1st ed. 2017): Albert Y. Zomaya, Sherif Sakr Handbook of Big Data Technologies (Hardcover, 1st ed. 2017)
Albert Y. Zomaya, Sherif Sakr
R11,013 Discovery Miles 110 130 Ships in 12 - 17 working days

This handbook offers comprehensive coverage of recent advancements in Big Data technologies and related paradigms. Chapters are authored by international leading experts in the field, and have been reviewed and revised for maximum reader value. The volume consists of twenty-five chapters organized into four main parts. Part one covers the fundamental concepts of Big Data technologies including data curation mechanisms, data models, storage models, programming models and programming platforms. It also dives into the details of implementing Big SQL query engines and big stream processing systems. Part Two focuses on the semantic aspects of Big Data management including data integration and exploratory ad hoc analysis in addition to structured querying and pattern matching techniques. Part Three presents a comprehensive overview of large scale graph processing. It covers the most recent research in large scale graph processing platforms, introducing several scalable graph querying and mining mechanisms in domains such as social networks. Part Four details novel applications that have been made possible by the rapid emergence of Big Data technologies such as Internet-of-Things (IOT), Cognitive Computing and SCADA Systems. All parts of the book discuss open research problems, including potential opportunities, that have arisen from the rapid progress of Big Data technologies and the associated increasing requirements of application domains. Designed for researchers, IT professionals and graduate students, this book is a timely contribution to the growing Big Data field. Big Data has been recognized as one of leading emerging technologies that will have a major contribution and impact on the various fields of science and varies aspect of the human society over the coming decades. Therefore, the content in this book will be an essential tool to help readers understand the development and future of the field.

Process Analytics - Concepts and Techniques for Querying and Analyzing Process Data (Hardcover, 1st ed. 2016): Seyed-Mehdi-Reza... Process Analytics - Concepts and Techniques for Querying and Analyzing Process Data (Hardcover, 1st ed. 2016)
Seyed-Mehdi-Reza Beheshti, Boualem Benatallah, Sherif Sakr, Daniela Grigori, Hamid Reza Motahari-Nezhad, …
R2,514 Discovery Miles 25 140 Ships in 12 - 17 working days

This book starts with an introduction to process modeling and process paradigms, then explains how to query and analyze process models, and how to analyze the process execution data. In this way, readers receive a comprehensive overview of what is needed to identify, understand and improve business processes. The book chiefly focuses on concepts, techniques and methods. It covers a large body of knowledge on process analytics - including process data querying, analysis, matching and correlating process data and models - to help practitioners and researchers understand the underlying concepts, problems, methods, tools and techniques involved in modern process analytics. Following an introduction to basic business process and process analytics concepts, it describes the state of the art in this area before examining different analytics techniques in detail. In this regard, the book covers analytics over different levels of process abstractions, from process execution data and methods for linking and correlating process execution data, to inferring process models, querying process execution data and process models, and scalable process data analytics methods. In addition, it provides a review of commercial process analytics tools and their practical applications. The book is intended for a broad readership interested in business process management and process analytics. It provides researchers with an introduction to these fields by comprehensively classifying the current state of research, by describing in-depth techniques and methods, and by highlighting future research directions. Lecturers will find a wealth of material to choose from for a variety of courses, ranging from undergraduate courses in business process management to graduate courses in business process analytics. Lastly, it offers professionals a reference guide to the state of the art in commercial tools and techniques, complemented by many real-world use case scenarios.

Linked Data - Storing, Querying, and Reasoning (Hardcover, 1st ed. 2018): Sherif Sakr, Marcin Wylot, Raghava Mutharaju, Danh Le... Linked Data - Storing, Querying, and Reasoning (Hardcover, 1st ed. 2018)
Sherif Sakr, Marcin Wylot, Raghava Mutharaju, Danh Le Phuoc, Irini Fundulaki
R4,703 Discovery Miles 47 030 Ships in 12 - 17 working days

This book describes efficient and effective techniques for harnessing the power of Linked Data by tackling the various aspects of managing its growing volume: storing, querying, reasoning, provenance management and benchmarking. To this end, Chapter 1 introduces the main concepts of the Semantic Web and Linked Data and provides a roadmap for the book. Next, Chapter 2 briefly presents the basic concepts underpinning Linked Data technologies that are discussed in the book. Chapter 3 then offers an overview of various techniques and systems for centrally querying RDF datasets, and Chapter 4 outlines various techniques and systems for efficiently querying large RDF datasets in distributed environments. Subsequently, Chapter 5 explores how streaming requirements are addressed in current, state-of-the-art RDF stream data processing. Chapter 6 covers performance and scaling issues of distributed RDF reasoning systems, while Chapter 7 details benchmarks for RDF query engines and instance matching systems. Chapter 8 addresses the provenance management for Linked Data and presents the different provenance models developed. Lastly, Chapter 9 offers a brief summary, highlighting and providing insights into some of the open challenges and research directions. Providing an updated overview of methods, technologies and systems related to Linked Data this book is mainly intended for students and researchers who are interested in the Linked Data domain. It enables students to gain an understanding of the foundations and underpinning technologies and standards for Linked Data, while researchers benefit from the in-depth coverage of the emerging and ongoing advances in Linked Data storing, querying, reasoning, and provenance management systems. Further, it serves as a starting point to tackle the next research challenges in the domain of Linked Data management.

Large-Scale Graph Processing Using Apache Giraph (Hardcover, 1st ed. 2016): Sherif Sakr, Faisal Moeen Orakzai, Ibrahim... Large-Scale Graph Processing Using Apache Giraph (Hardcover, 1st ed. 2016)
Sherif Sakr, Faisal Moeen Orakzai, Ibrahim Abdelaziz, Zuhair Khayyat
R2,053 Discovery Miles 20 530 Ships in 12 - 17 working days

This book takes its reader on a journey through Apache Giraph, a popular distributed graph processing platform designed to bring the power of big data processing to graph data. Designed as a step-by-step self-study guide for everyone interested in large-scale graph processing, it describes the fundamental abstractions of the system, its programming models and various techniques for using the system to process graph data at scale, including the implementation of several popular and advanced graph analytics algorithms. The book is organized as follows: Chapter 1 starts by providing a general background of the big data phenomenon and a general introduction to the Apache Giraph system, its abstraction, programming model and design architecture. Next, chapter 2 focuses on Giraph as a platform and how to use it. Based on a sample job, even more advanced topics like monitoring the Giraph application lifecycle and different methods for monitoring Giraph jobs are explained. Chapter 3 then provides an introduction to Giraph programming, introduces the basic Giraph graph model and explains how to write Giraph programs. In turn, Chapter 4 discusses in detail the implementation of some popular graph algorithms including PageRank, connected components, shortest paths and triangle closing. Chapter 5 focuses on advanced Giraph programming, discussing common Giraph algorithmic optimizations, tunable Giraph configurations that determine the system's utilization of the underlying resources, and how to write a custom graph input and output format. Lastly, chapter 6 highlights two systems that have been introduced to tackle the challenge of large scale graph processing, GraphX and GraphLab, and explains the main commonalities and differences between these systems and Apache Giraph. This book serves as an essential reference guide for students, researchers and practitioners in the domain of large scale graph processing. It offers step-by-step guidance, with several code examples and the complete source code available in the related github repository. Students will find a comprehensive introduction to and hands-on practice with tackling large scale graph processing problems using the Apache Giraph system, while researchers will discover thorough coverage of the emerging and ongoing advancements in big graph processing systems.

Large Scale and Big Data - Processing and Management (Hardcover): Sherif Sakr, Mohamed Gaber Large Scale and Big Data - Processing and Management (Hardcover)
Sherif Sakr, Mohamed Gaber
R4,185 Discovery Miles 41 850 Ships in 12 - 17 working days

Large Scale and Big Data: Processing and Management provides readers with a central source of reference on the data management techniques currently available for large-scale data processing. Presenting chapters written by leading researchers, academics, and practitioners, it addresses the fundamental challenges associated with Big Data processing tools and techniques across a range of computing environments. The book begins by discussing the basic concepts and tools of large-scale Big Data processing and cloud computing. It also provides an overview of different programming models and cloud-based deployment models. The book's second section examines the usage of advanced Big Data processing techniques in different domains, including semantic web, graph processing, and stream processing. The third section discusses advanced topics of Big Data processing such as consistency management, privacy, and security. Supplying a comprehensive summary from both the research and applied perspectives, the book covers recent research discoveries and applications, making it an ideal reference for a wide range of audiences, including researchers and academics working on databases, data mining, and web scale data processing. After reading this book, you will gain a fundamental understanding of how to use Big Data-processing tools and techniques effectively across application domains. Coverage includes cloud data management architectures, big data analytics visualization, data management, analytics for vast amounts of unstructured data, clustering, classification, link analysis of big data, scalable data mining, and machine learning techniques.

Linked Data - Storing, Querying, and Reasoning (Paperback, Softcover reprint of the original 1st ed. 2018): Sherif Sakr, Marcin... Linked Data - Storing, Querying, and Reasoning (Paperback, Softcover reprint of the original 1st ed. 2018)
Sherif Sakr, Marcin Wylot, Raghava Mutharaju, Danh Le Phuoc, Irini Fundulaki
R4,468 Discovery Miles 44 680 Ships in 10 - 15 working days

This book describes efficient and effective techniques for harnessing the power of Linked Data by tackling the various aspects of managing its growing volume: storing, querying, reasoning, provenance management and benchmarking. To this end, Chapter 1 introduces the main concepts of the Semantic Web and Linked Data and provides a roadmap for the book. Next, Chapter 2 briefly presents the basic concepts underpinning Linked Data technologies that are discussed in the book. Chapter 3 then offers an overview of various techniques and systems for centrally querying RDF datasets, and Chapter 4 outlines various techniques and systems for efficiently querying large RDF datasets in distributed environments. Subsequently, Chapter 5 explores how streaming requirements are addressed in current, state-of-the-art RDF stream data processing. Chapter 6 covers performance and scaling issues of distributed RDF reasoning systems, while Chapter 7 details benchmarks for RDF query engines and instance matching systems. Chapter 8 addresses the provenance management for Linked Data and presents the different provenance models developed. Lastly, Chapter 9 offers a brief summary, highlighting and providing insights into some of the open challenges and research directions. Providing an updated overview of methods, technologies and systems related to Linked Data this book is mainly intended for students and researchers who are interested in the Linked Data domain. It enables students to gain an understanding of the foundations and underpinning technologies and standards for Linked Data, while researchers benefit from the in-depth coverage of the emerging and ongoing advances in Linked Data storing, querying, reasoning, and provenance management systems. Further, it serves as a starting point to tackle the next research challenges in the domain of Linked Data management.

Handbook of Big Data Technologies (Paperback, Softcover reprint of the original 1st ed. 2017): Albert Y. Zomaya, Sherif Sakr Handbook of Big Data Technologies (Paperback, Softcover reprint of the original 1st ed. 2017)
Albert Y. Zomaya, Sherif Sakr
R11,122 Discovery Miles 111 220 Ships in 10 - 15 working days

This handbook offers comprehensive coverage of recent advancements in Big Data technologies and related paradigms. Chapters are authored by international leading experts in the field, and have been reviewed and revised for maximum reader value. The volume consists of twenty-five chapters organized into four main parts. Part one covers the fundamental concepts of Big Data technologies including data curation mechanisms, data models, storage models, programming models and programming platforms. It also dives into the details of implementing Big SQL query engines and big stream processing systems. Part Two focuses on the semantic aspects of Big Data management including data integration and exploratory ad hoc analysis in addition to structured querying and pattern matching techniques. Part Three presents a comprehensive overview of large scale graph processing. It covers the most recent research in large scale graph processing platforms, introducing several scalable graph querying and mining mechanisms in domains such as social networks. Part Four details novel applications that have been made possible by the rapid emergence of Big Data technologies such as Internet-of-Things (IOT), Cognitive Computing and SCADA Systems. All parts of the book discuss open research problems, including potential opportunities, that have arisen from the rapid progress of Big Data technologies and the associated increasing requirements of application domains. Designed for researchers, IT professionals and graduate students, this book is a timely contribution to the growing Big Data field. Big Data has been recognized as one of leading emerging technologies that will have a major contribution and impact on the various fields of science and varies aspect of the human society over the coming decades. Therefore, the content in this book will be an essential tool to help readers understand the development and future of the field.

Large-Scale Graph Processing Using Apache Giraph (Paperback, Softcover reprint of the original 1st ed. 2016): Sherif Sakr,... Large-Scale Graph Processing Using Apache Giraph (Paperback, Softcover reprint of the original 1st ed. 2016)
Sherif Sakr, Faisal Moeen Orakzai, Ibrahim Abdelaziz, Zuhair Khayyat
R1,589 Discovery Miles 15 890 Ships in 10 - 15 working days

This book takes its reader on a journey through Apache Giraph, a popular distributed graph processing platform designed to bring the power of big data processing to graph data. Designed as a step-by-step self-study guide for everyone interested in large-scale graph processing, it describes the fundamental abstractions of the system, its programming models and various techniques for using the system to process graph data at scale, including the implementation of several popular and advanced graph analytics algorithms. The book is organized as follows: Chapter 1 starts by providing a general background of the big data phenomenon and a general introduction to the Apache Giraph system, its abstraction, programming model and design architecture. Next, chapter 2 focuses on Giraph as a platform and how to use it. Based on a sample job, even more advanced topics like monitoring the Giraph application lifecycle and different methods for monitoring Giraph jobs are explained. Chapter 3 then provides an introduction to Giraph programming, introduces the basic Giraph graph model and explains how to write Giraph programs. In turn, Chapter 4 discusses in detail the implementation of some popular graph algorithms including PageRank, connected components, shortest paths and triangle closing. Chapter 5 focuses on advanced Giraph programming, discussing common Giraph algorithmic optimizations, tunable Giraph configurations that determine the system's utilization of the underlying resources, and how to write a custom graph input and output format. Lastly, chapter 6 highlights two systems that have been introduced to tackle the challenge of large scale graph processing, GraphX and GraphLab, and explains the main commonalities and differences between these systems and Apache Giraph. This book serves as an essential reference guide for students, researchers and practitioners in the domain of large scale graph processing. It offers step-by-step guidance, with several code examples and the complete source code available in the related github repository. Students will find a comprehensive introduction to and hands-on practice with tackling large scale graph processing problems using the Apache Giraph system, while researchers will discover thorough coverage of the emerging and ongoing advancements in big graph processing systems.

Process Analytics - Concepts and Techniques for Querying and Analyzing Process Data (Paperback, Softcover reprint of the... Process Analytics - Concepts and Techniques for Querying and Analyzing Process Data (Paperback, Softcover reprint of the original 1st ed. 2016)
Seyed-Mehdi-Reza Beheshti, Boualem Benatallah, Sherif Sakr, Daniela Grigori, Hamid Reza Motahari-Nezhad, …
R2,699 Discovery Miles 26 990 Ships in 10 - 15 working days

This book starts with an introduction to process modeling and process paradigms, then explains how to query and analyze process models, and how to analyze the process execution data. In this way, readers receive a comprehensive overview of what is needed to identify, understand and improve business processes. The book chiefly focuses on concepts, techniques and methods. It covers a large body of knowledge on process analytics - including process data querying, analysis, matching and correlating process data and models - to help practitioners and researchers understand the underlying concepts, problems, methods, tools and techniques involved in modern process analytics. Following an introduction to basic business process and process analytics concepts, it describes the state of the art in this area before examining different analytics techniques in detail. In this regard, the book covers analytics over different levels of process abstractions, from process execution data and methods for linking and correlating process execution data, to inferring process models, querying process execution data and process models, and scalable process data analytics methods. In addition, it provides a review of commercial process analytics tools and their practical applications. The book is intended for a broad readership interested in business process management and process analytics. It provides researchers with an introduction to these fields by comprehensively classifying the current state of research, by describing in-depth techniques and methods, and by highlighting future research directions. Lecturers will find a wealth of material to choose from for a variety of courses, ranging from undergraduate courses in business process management to graduate courses in business process analytics. Lastly, it offers professionals a reference guide to the state of the art in commercial tools and techniques, complemented by many real-world use case scenarios.

Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXV (Paperback, 1st ed. 2017): Abdelkader Hameurlain, Josef... Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXV (Paperback, 1st ed. 2017)
Abdelkader Hameurlain, Josef Kung, Roland Wagner, Sherif Sakr, Imran Razzak, …
R1,830 Discovery Miles 18 300 Ships in 10 - 15 working days

This volume, the 35th issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems, contains five fully-revised selected regular papers focusing on data quality, social-data artifacts, data privacy, predictive models, and e-health. Specifically, the five papers present and discuss a data-quality framework for the Estonian public sector; a data-driven approach to bridging the gap between the business and social worlds; privacy-preserving querying on privately encrypted data in the cloud; algorithms for the prediction of norovirus concentration in drinking water; and cloud computing in healthcare organizations in Saudi Arabia.

Large Scale and Big Data - Processing and Management (Paperback): Sherif Sakr, Mohamed Gaber Large Scale and Big Data - Processing and Management (Paperback)
Sherif Sakr, Mohamed Gaber
R1,673 Discovery Miles 16 730 Ships in 12 - 17 working days

Large Scale and Big Data: Processing and Management provides readers with a central source of reference on the data management techniques currently available for large-scale data processing. Presenting chapters written by leading researchers, academics, and practitioners, it addresses the fundamental challenges associated with Big Data processing tools and techniques across a range of computing environments. The book begins by discussing the basic concepts and tools of large-scale Big Data processing and cloud computing. It also provides an overview of different programming models and cloud-based deployment models. The book's second section examines the usage of advanced Big Data processing techniques in different domains, including semantic web, graph processing, and stream processing. The third section discusses advanced topics of Big Data processing such as consistency management, privacy, and security. Supplying a comprehensive summary from both the research and applied perspectives, the book covers recent research discoveries and applications, making it an ideal reference for a wide range of audiences, including researchers and academics working on databases, data mining, and web scale data processing. After reading this book, you will gain a fundamental understanding of how to use Big Data-processing tools and techniques effectively across application domains. Coverage includes cloud data management architectures, big data analytics visualization, data management, analytics for vast amounts of unstructured data, clustering, classification, link analysis of big data, scalable data mining, and machine learning techniques.

Big Data 2.0 Processing Systems - A Systems Overview (Paperback, 2nd ed. 2020): Sherif Sakr Big Data 2.0 Processing Systems - A Systems Overview (Paperback, 2nd ed. 2020)
Sherif Sakr
R2,031 Discovery Miles 20 310 Ships in 10 - 15 working days

This book provides readers the "big picture" and a comprehensive survey of the domain of big data processing systems. For the past decade, the Hadoop framework has dominated the world of big data processing, yet recently academia and industry have started to recognize its limitations in several application domains and thus, it is now gradually being replaced by a collection of engines that are dedicated to specific verticals (e.g. structured data, graph data, and streaming data). The book explores this new wave of systems, which it refers to as Big Data 2.0 processing systems. After Chapter 1 presents the general background of the big data phenomena, Chapter 2 provides an overview of various general-purpose big data processing systems that allow their users to develop various big data processing jobs for different application domains. In turn, Chapter 3 examines various systems that have been introduced to support the SQL flavor on top of the Hadoop infrastructure and provide competing and scalable performance in the processing of large-scale structured data. Chapter 4 discusses several systems that have been designed to tackle the problem of large-scale graph processing, while the main focus of Chapter 5 is on several systems that have been designed to provide scalable solutions for processing big data streams, and on other sets of systems that have been introduced to support the development of data pipelines between various types of big data processing jobs and systems. Next, Chapter 6 focuses on covering the emerging frameworks and systems in the domain of scalable machine learning and deep learning processing. Lastly, Chapter 7 shares conclusions and an outlook on future research challenges. This new and considerably enlarged second edition not only contains the completely new chapter 6, but also offers a refreshed content for the state-of-the-art in all domains of big data processing over the last years. Overall, the book offers a valuable reference guide for professional, students, and researchers in the domain of big data processing systems. Further, its comprehensive content will hopefully encourage readers to pursue further research on the subject.

Transactions on Large-Scale Data- and Knowledge-Centered Systems XX - Special Issue on Advanced Techniques for Big Data... Transactions on Large-Scale Data- and Knowledge-Centered Systems XX - Special Issue on Advanced Techniques for Big Data Management (Paperback, 2015 ed.)
Abdelkader Hameurlain, Josef Kung, Roland Wagner, Sherif Sakr, Lizhe Wang, …
R1,911 Discovery Miles 19 110 Ships in 10 - 15 working days

The LNCS journal Transactions on Large-Scale Data- and Knowledge-Centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application development in all domains. An increase in the demand for resource sharing across different sites connected through networks has led to an evolution of data- and knowledge-management systems from centralized systems to decentralized systems enabling large-scale distributed applications providing high scalability. Current decentralized systems still focus on data and knowledge as their main resource. Feasibility of these systems relies basically on P2P (peer-to-peer) techniques and the support of agent systems with scaling and decentralized control. Synergy between grids, P2P systems, and agent technologies is the key to data- and knowledge-centered systems in large-scale environments. This, the 20th issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems, presents a representative and useful selection of articles covering a wide range of important topics in the domain of advanced techniques for big data management. Big data has become a popular term, used to describe the exponential growth and availability of data. The recent radical expansion and integration of computation, networking, digital devices, and data storage has provided a robust platform for the explosion in big data, as well as being the means by which big data are generated, processed, shared, and analyzed. In general, data are only useful if meaning and value can be extracted from them. Big data discovery enables data scientists and other analysts to uncover patterns and correlations through analysis of large volumes of data of diverse types. Insights gleaned from big data discovery can provide businesses with significant competitive advantages, leading to more successful marketing campaigns, decreased customer churn, and reduced loss from fraud. In practice, the growing demand for large-scale data processing and data analysis applications has spurred the development of novel solutions from both industry and academia.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
- (Subtract)
Ed Sheeran CD R165 R74 Discovery Miles 740
3 Layer Fabric Face Mask (Blue)
R15 Discovery Miles 150
Nuovo All-In-One Car Seat (Black)
R3,599 R3,020 Discovery Miles 30 200
Bostik Glue Stick (40g)
R52 Discovery Miles 520
Multi Colour Jungle Stripe Neckerchief
R119 Discovery Miles 1 190
JBL T110 In-Ear Headphones (Black)
 (13)
R229 R201 Discovery Miles 2 010
Mousepad with Gel Wrist Support
R70 Discovery Miles 700
Professor Snape Wizard Wand - In…
 (8)
R801 Discovery Miles 8 010
Sony NEW Playstation Dualshock 4 v2…
 (3)
R1,842 R1,450 Discovery Miles 14 500
Stabilo Mini World Pastel Love Gift Set…
R669 Discovery Miles 6 690

 

Partners