Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
After the pioneering works by Robbins {1944, 1945) and Choquet (1955), the notation of a set-valued random variable (called a random closed set in literatures) was systematically introduced by Kendall {1974) and Matheron {1975). It is well known that the theory of set-valued random variables is a natural extension of that of general real-valued random variables or random vectors. However, owing to the topological structure of the space of closed sets and special features of set-theoretic operations ( cf. Beer [27]), set-valued random variables have many special properties. This gives new meanings for the classical probability theory. As a result of the development in this area in the past more than 30 years, the theory of set-valued random variables with many applications has become one of new and active branches in probability theory. In practice also, we are often faced with random experiments whose outcomes are not numbers but are expressed in inexact linguistic terms.
This volume is a collection of papers presented at the international conference on Nonlinear Mathematics for Uncertainty and Its Applications (NLMUA2011), held at Beijing University of Technology during the week of September 7--9, 2011. The conference brought together leading researchers and practitioners involved with all aspects of nonlinear mathematics for uncertainty and its applications. Over the last fifty years there have been many attempts in extending the theory of classical probability and statistical models to the generalized one which can cope with problems of inference and decision making when the model-related information is scarce, vague, ambiguous, or incomplete. Such attempts include the study of nonadditive measures and their integrals, imprecise probabilities and random sets, and their applications in information sciences, economics, finance, insurance, engineering, and social sciences. The book presents topics including nonadditive measures and nonlinear integrals, Choquet, Sugeno and other types of integrals, possibility theory, Dempster-Shafer theory, random sets, fuzzy random sets and related statistics, set-valued and fuzzy stochastic processes, imprecise probability theory and related statistical models, fuzzy mathematics, nonlinear functional analysis, information theory, mathematical finance and risk managements, decision making under various types of uncertainty, and others.
This volume is a collection of papers presented at the international conference on Nonlinear Mathematics for Uncertainty and Its Applications (NLMUA2011), held at Beijing University of Technology during the week of September 7--9, 2011. The conference brought together leading researchers and practitioners involved with all aspects of nonlinear mathematics for uncertainty and its applications. Over the last fifty years there have been many attempts in extending the theory of classical probability and statistical models to the generalized one which can cope with problems of inference and decision making when the model-related information is scarce, vague, ambiguous, or incomplete. Such attempts include the study of nonadditive measures and their integrals, imprecise probabilities and random sets, and their applications in information sciences, economics, finance, insurance, engineering, and social sciences. The book presents topics including nonadditive measures and nonlinear integrals, Choquet, Sugeno and other types of integrals, possibility theory, Dempster-Shafer theory, random sets, fuzzy random sets and related statistics, set-valued and fuzzy stochastic processes, imprecise probability theory and related statistical models, fuzzy mathematics, nonlinear functional analysis, information theory, mathematical finance and risk managements, decision making under various types of uncertainty, and others.
After the pioneering works by Robbins {1944, 1945) and Choquet (1955), the notation of a set-valued random variable (called a random closed set in literatures) was systematically introduced by Kendall {1974) and Matheron {1975). It is well known that the theory of set-valued random variables is a natural extension of that of general real-valued random variables or random vectors. However, owing to the topological structure of the space of closed sets and special features of set-theoretic operations ( cf. Beer [27]), set-valued random variables have many special properties. This gives new meanings for the classical probability theory. As a result of the development in this area in the past more than 30 years, the theory of set-valued random variables with many applications has become one of new and active branches in probability theory. In practice also, we are often faced with random experiments whose outcomes are not numbers but are expressed in inexact linguistic terms.
The idea of soft computing emerged in the early 1990s from the fuzzy systems c- munity, and refers to an understanding that the uncertainty, imprecision and ig- rance present in a problem should be explicitly represented and possibly even - ploited rather than either eliminated or ignored in computations. For instance, Zadeh de?ned 'Soft Computing' as follows: Soft computing differs from conventional (hard) computing in that, unlike hard computing, it is tolerant of imprecision, uncertainty and partial truth. In effect, the role model for soft computing is the human mind. Recently soft computing has, to some extent, become synonymous with a hybrid approach combining AI techniques including fuzzy systems, neural networks, and biologically inspired methods such as genetic algorithms. Here, however, we adopt a more straightforward de?nition consistent with the original concept. Hence, soft methods are understood as those uncertainty formalisms not part of mainstream s- tistics and probability theory which have typically been developed within the AI and decisionanalysiscommunity.Thesearemathematicallysounduncertaintymodelling methodologies which are complementary to conventional statistics and probability theory.
|
You may like...
|