Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
* This book is an updated version of a well-received book previously published in Chinese by Science Press of China (the first edition in 2006 and the second in 2013). It offers a systematic and practical overview of spatial data mining, which combines computer science and geo-spatial information science, allowing each field to profit from the knowledge and techniques of the other. To address the spatiotemporal specialties of spatial data, the authors introduce the key concepts and algorithms of the data field, cloud model, mining view, and Deren Li methods. The data field method captures the interactions between spatial objects by diffusing the data contribution from a universe of samples to a universe of population, thereby bridging the gap between the data model and the recognition model. The cloud model is a qualitative method that utilizes quantitative numerical characters to bridge the gap between pure data and linguistic concepts. The mining view method discriminates the different requirements by using scale, hierarchy, and granularity in order to uncover the anisotropy of spatial data mining. The Deren Li method performs data preprocessing to prepare it for further knowledge discovery by selecting a weight for iteration in order to clean the observed spatial data as much as possible. In addition to the essential algorithms and techniques, the book provides application examples of spatial data mining in geographic information science and remote sensing. The practical projects include spatiotemporal video data mining for protecting public security, serial image mining on nighttime lights for assessing the severity of the Syrian Crisis, and the applications in the government project 'the Belt and Road Initiatives'.
* This book is an updated version of a well-received book previously published in Chinese by Science Press of China (the first edition in 2006 and the second in 2013). It offers a systematic and practical overview of spatial data mining, which combines computer science and geo-spatial information science, allowing each field to profit from the knowledge and techniques of the other. To address the spatiotemporal specialties of spatial data, the authors introduce the key concepts and algorithms of the data field, cloud model, mining view, and Deren Li methods. The data field method captures the interactions between spatial objects by diffusing the data contribution from a universe of samples to a universe of population, thereby bridging the gap between the data model and the recognition model. The cloud model is a qualitative method that utilizes quantitative numerical characters to bridge the gap between pure data and linguistic concepts. The mining view method discriminates the different requirements by using scale, hierarchy, and granularity in order to uncover the anisotropy of spatial data mining. The Deren Li method performs data preprocessing to prepare it for further knowledge discovery by selecting a weight for iteration in order to clean the observed spatial data as much as possible. In addition to the essential algorithms and techniques, the book provides application examples of spatial data mining in geographic information science and remote sensing. The practical projects include spatiotemporal video data mining for protecting public security, serial image mining on nighttime lights for assessing the severity of the Syrian Crisis, and the applications in the government project 'the Belt and Road Initiatives'.
With the ever-growing power to generate, transmit and collect huge amounts of data, information overload is now an imminent problem to mankind. The overwhelming demand for information processing is not just about a better - derstanding of data, but also a better usage of data in a timely fashion. Data mining, or knowledge discovery from databases, is proposed to gain insight into aspects of dataand to help peoplemakeinformed, sensible, andbetter decisions. At present, growing attention has been paid to the study, development and - plication of data mining. As a result there is an urgent need for sophisticated techniques and tools that can handle new ?elds of data mining, e.g., spatialdata mining, biomedical data mining, and mining on high-speed and time-variant data streams. The knowledge of data mining should also be expanded to new applications. The1stInternationalConferenceonAdvancedDataMiningandApplications (ADMA 2005) aimed to bring together the experts on data mining throughout the world. It provided a leading international forum for the dissemination of original research results in advanced data mining techniques, applications, al- rithms, software and systems, and di?erent applied disciplines. The conference attracted 539 online submissions and 63 mailing submissions from 25 di?erent countriesandareas.Allfullpaperswerepeer reviewedbyatleastthreemembers of the Program Committee composed of international experts in data mining ?elds. A total number of 100 papers were accepted for the conference. Amongst them 25 papers were selected as regular papers and 75 papers were selected as short papers, yielding a combined acceptance rate of 17%
Objective Information Theory (OIT) is proposed to represent and compute the information in a large-scale complex information system with big data in this monograph. To formally analyze, design, develop, and evaluate the information, OIT interprets the information from essential nature, measures the information from mathematical properties, and models the information from concept, logic, and physic. As the exemplified applications, Air Traffic Control System (ATCS) and Smart Court SoSs (System of Systems) are introduced for practical OITs. This Open Access book can be used as a technical reference book in the field of information science and also a  reference textbook for senior students and graduate ones in related majors.
This book constitutes the proceedings of the 15th International Conference on Advanced Data Mining and Applications, ADMA 2019, held in Dalian, China in November 2019. The 39 full papers presented together with 26 short papers and 2 demo papers were carefully reviewed and selected from 170 submissions. The papers were organized in topical sections named: Data Mining Foundations; Classification and Clustering Methods; Recommender Systems; Social Network and Social Media; Behavior Modeling and User Profiling; Text and Multimedia Mining; Spatial-Temporal Data; Medical and Healthcare Data/Decision Analytics; and Other Applications.
This book constitutes the refereed proceedings of the 14th International Conference on Advanced Data Mining and Applications, ADMA 2018, held in Nanjing, China in November 2018. The 23 full and 22 short papers presented in this volume were carefully reviewed and selected from 104 submissions. The papers were organized in topical sections named: Data Mining Foundations; Big Data; Text and Multimedia Mining; Miscellaneous Topics.
This book constitutes the proceedings of the 12th International Conference on Advanced Data Mining and Applications, ADMA 2016, held in Gold Coast, Australia, in December 2016. The 70 papers presented in this volume were carefully reviewed and selected from 105 submissions. The selected papers covered a wide variety of important topics in the area of data mining, including parallel and distributed data mining algorithms, mining on data streams, graph mining, spatial data mining, multimedia data mining, Web mining, the Internet of Things, health informatics, and biomedical data mining.
|
You may like...
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
(1)
|