![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
Providing a practical introduction to state space methods as
applied to unobserved components time series models, also known as
structural time series models, this book introduces time series
analysis using state space methodology to readers who are neither
familiar with time series analysis, nor with state space methods.
The only background required in order to understand the material
presented in the book is a basic knowledge of classical linear
regression models, of which brief review is provided to refresh the
reader's knowledge. Also, a few sections assume familiarity with
matrix algebra, however, these sections may be skipped without
losing the flow of the exposition.
Dynamic factor models (DFM) constitute an active and growing area of research, both in econometrics, in macroeconomics, and in finance. Many applications lie at the center of policy questions raised by the recent financial crises, such as the connections between yields on government debt, credit risk, inflation, and economic growth. This volume collects a key selection of up-to-date contributions that cover a wide range of issues in the context of dynamic factor modeling, such as specification, estimation, and application of DFMs. Examples include further developments in DFM for mixed-frequency data settings, extensions to time-varying parameters and structural breaks, for multi-level factors associated with subsets of variables, in factor augmented error correction models, and in many other related aspects. A number of contributions propose new estimation procedures for DFM, such as spectral expectation-maximization algorithms and Bayesian approaches. Numerous applications are discussed, including the dating of business cycles, implied volatility surfaces, professional forecaster survey data, and many more.
This volume presents original and up-to-date studies in unobserved components (UC) time series models from both theoretical and methodological perspectives. It also presents empirical studies where the UC time series methodology is adopted. Drawing on the intellectual influence of Andrew Harvey, the work covers three main topics: the theory and methodology for unobserved components time series models; applications of unobserved components time series models; and time series econometrics and estimation and testing. These types of time series models have seen wide application in economics, statistics, finance, climate change, engineering, biostatistics, and sports statistics. The volume effectively provides a key review into relevant research directions for UC time series econometrics and will be of interest to econometricians, time series statisticians, and practitioners (government, central banks, business) in time series analysis and forecasting, as well to researchers and graduate students in statistics, econometrics, and engineering.
This 2004 volume offers a broad overview of developments in the theory and applications of state space modeling. With fourteen chapters from twenty-three contributors, it offers a unique synthesis of state space methods and unobserved component models that are important in a wide range of subjects, including economics, finance, environmental science, medicine and engineering. The book is divided into four sections: introductory papers, testing, Bayesian inference and the bootstrap, and applications. It will give those unfamiliar with state space models a flavour of the work being carried out as well as providing experts with valuable state of the art summaries of different topics. Offering a useful reference for all, this accessible volume makes a significant contribution to the literature of this discipline.
This new edition updates Durbin & Koopman's important text on the state space approach to time series analysis. The distinguishing feature of state space time series models is that observations are regarded as made up of distinct components such as trend, seasonal, regression elements and disturbance terms, each of which is modelled separately. The techniques that emerge from this approach are very flexible and are capable of handling a much wider range of problems than the main analytical system currently in use for time series analysis, the Box-Jenkins ARIMA system. Additions to this second edition include the filtering of nonlinear and non-Gaussian series. Part I of the book obtains the mean and variance of the state, of a variable intended to measure the effect of an interaction and of regression coefficients, in terms of the observations. Part II extends the treatment to nonlinear and non-normal models. For these, analytical solutions are not available so methods are based on simulation.
|
![]() ![]() You may like...
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|