![]() |
![]() |
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
This book is a collection of original research and survey articles on mathematical inequalities and their numerous applications in diverse areas of mathematics and engineering. It includes chapters on convexity and related concepts; inequalities for mean values, sums, functions, operators, functionals, integrals and their applications in various branches of mathematics and related sciences; fractional integral inequalities; and weighted type integral inequalities. It also presents their wide applications in biomathematics, boundary value problems, mechanics, queuing models, scattering, and geomechanics in a concise, but easily understandable way that makes the further ramifications and future directions clear. The broad scope and high quality of the contributions make this book highly attractive for graduates, postgraduates and researchers. All the contributing authors are leading international academics, scientists, researchers and scholars.
This book is a self-contained advanced monograph on inequalities involving the numerical radius of bounded linear operators acting on complex Hilbert spaces. The study of numerical range and numerical radius has a long and distinguished history starting from the Rayleigh quotients used in the 19th century to nowadays applications in quantum information theory and quantum computing. This monograph is intended for use by both researchers and graduate students of mathematics, physics, and engineering who have a basic background in functional analysis and operator theory. The book provides several challenging problems and detailed arguments for the majority of the results. Each chapter ends with some notes about historical views or further extensions of the topics. It contains a bibliography of about 180 items, so it can be used as a reference book including many classical and modern numerical radius inequalities.
Drawing on the authors' research work from the last ten years, Mathematical Inequalities: A Perspective gives readers a different viewpoint of the field. It discusses the importance of various mathematical inequalities in contemporary mathematics and how these inequalities are used in different applications, such as scientific modeling. The authors include numerous classical and recent results that are comprehensible to both experts and general scientists. They describe key inequalities for real or complex numbers and sequences in analysis, including the Abel; the Biernacki, Pidek, and Ryll-Nardzewski; Cebysev's; the Cauchy-Bunyakovsky-Schwarz; and De Bruijn's inequalities. They also focus on the role of integral inequalities, such as Hermite-Hadamard inequalities, in modern analysis. In addition, the book covers Schwarz, Bessel, Boas-Bellman, Bombieri, Kurepa, Buzano, Precupanu, Dunkl-William, and Gruss inequalities as well as generalizations of Hermite-Hadamard inequalities for isotonic linear and sublinear functionals. For each inequality presented, results are complemented with many unique remarks that reveal rich interconnections between the inequalities. These discussions create a natural platform for further research in applications and related fields.
Drawing on the authors' research work from the last ten years, Mathematical Inequalities: A Perspective gives readers a different viewpoint of the field. It discusses the importance of various mathematical inequalities in contemporary mathematics and how these inequalities are used in different applications, such as scientific modeling. The authors include numerous classical and recent results that are comprehensible to both experts and general scientists. They describe key inequalities for real or complex numbers and sequences in analysis, including the Abel; the Biernacki, Pidek, and Ryll-Nardzewski; Cebysev's; the Cauchy-Bunyakovsky-Schwarz; and De Bruijn's inequalities. They also focus on the role of integral inequalities, such as Hermite-Hadamard inequalities, in modern analysis. In addition, the book covers Schwarz, Bessel, Boas-Bellman, Bombieri, Kurepa, Buzano, Precupanu, Dunkl-William, and Gr ss inequalities as well as generalizations of Hermite-Hadamard inequalities for isotonic linear and sublinear functionals. For each inequality presented, results are complemented with many unique remarks that reveal rich interconnections between the inequalities. These discussions create a natural platform for further research in applications and related fields.
The main aim of this book" "is to present recent results concerning inequalities of the Jensen, eby ev and Gruss type for continuous functions of bounded selfadjoint operators on complex Hilbert spaces. In the introductory chapter, the author portrays fundamental facts concerning bounded selfadjoint operators on complex Hilbert spaces. The generalized Schwarz's inequality for positive selfadjoint operators as well as some results for the spectrum of this class of operators are presented. This text introduces the reader to the fundamental results for polynomials in a linear operator, continuous functions of selfadjoint operators as well as the step functions of selfadjoint operators. The spectral decomposition for this class of operators, which play a central role in the rest of the book and its consequences are introduced. At the end of the chapter, some classical operator inequalities are presented as well. Recent new results that deal with different aspects of the famous Jensen operator inequality are explored through the second chapter. These include but are not limited to the operator version of the Dragomir-Ionescu inequality, the Slater type inequalities for operators and its inverses, Jensen's inequality for twice differentiable functions whose second derivatives satisfy some upper and lower bound conditions and Jensen's type inequalities for log-convex functions. Hermite-Hadamard's type inequalities for convex functions and the corresponding results for operator convex functions are also presented. The eby ev, (Chebyshev) inequality that compares the integral/discrete mean of the product with the product of the integral/discrete means is famous in the literature devoted to Mathematical Inequalities. The sister inequality due to Gruss which provides error bounds for the magnitude of the difference between the integral mean of the product and the product of the integral means has also attracted much interest since it has been discovered in 1935 with more than 200 papers published so far. The last part of the book is devoted to the operator versions of these famous results for continuous functions of selfadjoint operators on complex Hilbert spaces. Various particular cases of interest and related results are presented as well. This book" "is intended for use by both researchers in various fields of Linear Operator Theory and Mathematical Inequalities, domains which have grown exponentially in the last decade, as well as by postgraduate students and scientists applying inequalities in their specific areas. "
"Inequalities of Ostrowski and Trapezoidal Type for Functions of Selfadjoint Operators on Hilbert Spaces" presents recent results concerning Ostrowski and Trapezoidal type inequalities for continuous functions of bounded Selfadjoint operators on complex Hilbert spaces. The first chapter recalls some fundamental facts concerning bounded Selfadjoint operators on complex Hilbert spaces. The generalized Schwarz's inequality for positive Selfadjoint operators as well as some results for the spectrum of this class of operators are presented. The author also introduces and explores the fundamental results for polynomials in a linear operator, continuous functions of selfadjoint operators that will play a central role throughout the book. The following chapter is devoted to the Ostrowski's type inequalities, which provide sharp error estimates in approximating the value of a function by its integral mean and can be used to obtain a priory error bounds for different quadrature rules in approximating the Riemann integral by different Riemann sums. The author also presents recent results extending Ostrowski inequality in various directions for continuous functions of selfadjoint operators in complex Hilbert spaces. The final chapter illustrates recent results obtained in extending trapezoidal type inequality in various directions for continuous functions of selfadjoint operators in complex Hilbert spaces. Applications for mid-point inequalities and some elementary functions of operators as also provided. This book is intended for use by researchers in various fields of Linear Operator Theory and Mathematical Inequalities. As well as postgraduate students and scientists applying inequalities in their specific areas.
|
![]() ![]() You may like...
Surfacing - On Being Black And Feminist…
Desiree Lewis, Gabeba Baderoon
Paperback
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
![]()
|