Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
The key to the solution of geological hazards such as Karst water inrush and mud burst in tunnel lies in the accurate prediction or detection of Karst and groundwater. By means of on-site monitoring, theoretical analysis and indoor simulation experiments, the authors conduct in-depth research on the characteristics of water-bearing media and their mechanism of action, and explored the relevance of "Karst morphology", "Karst groundwater" and "fractal characteristics". An evaluation model of Karst development degree based on hydrochemical kinetic parameters and fractal index of Karst morphology is established. Based on the combination of Karst groundwater dynamics, hydrochemistry, water-rock interaction theory and fractal theory, the hydrochemical Kinetics and fractal index evaluation technique for Karst development is proposed. It provides a new theory and method for improving the accuracy of Karst and groundwater forecasting. The research results are of practical and guiding significance to the construction, Karst geological disasters prevention and management of various underground projects in Karst areas. Engineers and technicians, hydrogeological engineering geologists, and college students engaged in tunnel and underground engineering will find it valuable.
The key to the solution of geological hazards such as Karst water inrush and mud burst in tunnel lies in the accurate prediction or detection of Karst and groundwater. By means of on-site monitoring, theoretical analysis and indoor simulation experiments, the authors conduct in-depth research on the characteristics of water-bearing media and their mechanism of action, and explored the relevance of "Karst morphology", "Karst groundwater" and "fractal characteristics". An evaluation model of Karst development degree based on hydrochemical kinetic parameters and fractal index of Karst morphology is established. Based on the combination of Karst groundwater dynamics, hydrochemistry, water-rock interaction theory and fractal theory, the hydrochemical Kinetics and fractal index evaluation technique for Karst development is proposed. It provides a new theory and method for improving the accuracy of Karst and groundwater forecasting. The research results are of practical and guiding significance to the construction, Karst geological disasters prevention and management of various underground projects in Karst areas. Engineers and technicians, hydrogeological engineering geologists, and college students engaged in tunnel and underground engineering will find it valuable.
|
You may like...
|