0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • R5,000 - R10,000 (2)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Drought Stress Tolerance in Plants, Vol 1 - Physiology and Biochemistry (Hardcover, 1st ed. 2016): Mohammad Anwar Hossain,... Drought Stress Tolerance in Plants, Vol 1 - Physiology and Biochemistry (Hardcover, 1st ed. 2016)
Mohammad Anwar Hossain, Shabir Hussain Wani, Soumen Bhattacharjee, David J Burritt, Lam-Son Phan Tran
R6,091 R4,959 Discovery Miles 49 590 Save R1,132 (19%) Ships in 10 - 15 working days

Abiotic stress adversely affects crop production worldwide, decreasing average yields for most of the crops to 50%. Among various abiotic stresses affecting agricultural production, drought stress is considered to be the main source of yield reduction around the globe. Due to an increasing world population, drought stress will lead to a serious food shortage by 2050. The situation may become worse due to predicated global climate change that may multiply the frequency and duration and severity of such abiotic stresses. Hence, there is an urgent need to improve our understanding on complex mechanisms of drought stress tolerance and to develop modern varieties that are more resilient to drought stress. Identification of the potential novel genes responsible for drought tolerance in crop plants will contribute to understanding the molecular mechanism of crop responses to drought stress. The discovery of novel genes, the analysis of their expression patterns in response to drought stress, and the determination of their potential functions in drought stress adaptation will provide the basis of effective engineering strategies to enhance crop drought stress tolerance. Although the in-depth water stress tolerance mechanisms is still unclear, it can be to some extent explained on the basis of ion homeostasis mediated by stress adaptation effectors, toxic radical scavenging, osmolyte biosynthesis, water transport, and long distance signaling response coordination. Importantly, complete elucidation of the physiological, biochemical, and molecular mechanisms for drought stress, perception, transduction, and tolerance is still a challenge to the plant biologists. The findings presented in volume 1 call attention to the physiological and biochemical modalities of drought stress that influence crop productivity, whereas volume 2 summarizes our current understanding on the molecular and genetic mechanisms of drought stress resistance in plants.

Drought Stress Tolerance in Plants, Vol 2 - Molecular and Genetic Perspectives (Hardcover, 1st ed. 2016): Mohammad Anwar... Drought Stress Tolerance in Plants, Vol 2 - Molecular and Genetic Perspectives (Hardcover, 1st ed. 2016)
Mohammad Anwar Hossain, Shabir Hussain Wani, Soumen Bhattacharjee, David J Burritt, Lam-Son Phan Tran
R5,312 Discovery Miles 53 120 Ships in 10 - 15 working days

Drought is one of the most severe constraints to crop productivity worldwide, and thus it has become a major concern for global food security. Due to an increasing world population, droughts could lead to serious food shortages by 2050. The situation may worsen due to predicated climatic changes that may increase the frequency, duration and severity of droughts. Hence, there is an urgent need to improve our understanding of the complex mechanisms associated with drought tolerance and to develop modern crop varieties that are more resilient to drought. Identification of the genes responsible for drought tolerance in plants will contribute to our understanding of the molecular mechanisms that could enable crop plants to respond to drought. The discovery of novel drought related genes, the analysis of their expression patterns in response to drought, and determination of the functions these genes play in drought adaptation will provide a base to develop effective strategies to enhance the drought tolerance of crop plants. Plant breeding efforts to increase crop yields in dry environments have been slow to date mainly due to our poor understanding of the molecular and genetic mechanisms involved in how plants respond to drought. In addition, when it comes to combining favourable alleles, there are practical obstacles to developing superior high yielding genotypes fit for drought prone environments. Drought Tolerance in Plants, Vol 2: Molecular and Genetic Perspectives combines novel topical findings, regarding the major molecular and genetic events associated with drought tolerance, with contemporary crop improvement approaches. This volume is unique as it makes available for its readers not only extensive reports of existing facts and data, but also practical knowledge and overviews of state-of-the-art technologies, across the biological fields, from plant breeding using classical and molecular genetic information, to the modern omic technologies, that are now being used in drought tolerance research to breed drought-related traits into modern crop varieties. This book is useful for teachers and researchers in the fields of plant breeding, molecular biology and biotechnology.

Drought Stress Tolerance in Plants, Vol 1 - Physiology and Biochemistry (Paperback, Softcover reprint of the original 1st ed.... Drought Stress Tolerance in Plants, Vol 1 - Physiology and Biochemistry (Paperback, Softcover reprint of the original 1st ed. 2016)
Mohammad Anwar Hossain, Shabir Hussain Wani, Soumen Bhattacharjee, David J Burritt, Lam-Son Phan Tran
R4,080 Discovery Miles 40 800 Ships in 10 - 15 working days

Abiotic stress adversely affects crop production worldwide, decreasing average yields for most of the crops to 50%. Among various abiotic stresses affecting agricultural production, drought stress is considered to be the main source of yield reduction around the globe. Due to an increasing world population, drought stress will lead to a serious food shortage by 2050. The situation may become worse due to predicated global climate change that may multiply the frequency and duration and severity of such abiotic stresses. Hence, there is an urgent need to improve our understanding on complex mechanisms of drought stress tolerance and to develop modern varieties that are more resilient to drought stress. Identification of the potential novel genes responsible for drought tolerance in crop plants will contribute to understanding the molecular mechanism of crop responses to drought stress. The discovery of novel genes, the analysis of their expression patterns in response to drought stress, and the determination of their potential functions in drought stress adaptation will provide the basis of effective engineering strategies to enhance crop drought stress tolerance. Although the in-depth water stress tolerance mechanisms is still unclear, it can be to some extent explained on the basis of ion homeostasis mediated by stress adaptation effectors, toxic radical scavenging, osmolyte biosynthesis, water transport, and long distance signaling response coordination. Importantly, complete elucidation of the physiological, biochemical, and molecular mechanisms for drought stress, perception, transduction, and tolerance is still a challenge to the plant biologists. The findings presented in volume 1 call attention to the physiological and biochemical modalities of drought stress that influence crop productivity, whereas volume 2 summarizes our current understanding on the molecular and genetic mechanisms of drought stress resistance in plants.

Drought Stress Tolerance in Plants, Vol 2 - Molecular and Genetic Perspectives (Paperback, Softcover reprint of the original... Drought Stress Tolerance in Plants, Vol 2 - Molecular and Genetic Perspectives (Paperback, Softcover reprint of the original 1st ed. 2016)
Mohammad Anwar Hossain, Shabir Hussain Wani, Soumen Bhattacharjee, David J Burritt, Lam-Son Phan Tran
R6,756 Discovery Miles 67 560 Ships in 10 - 15 working days

Drought is one of the most severe constraints to crop productivity worldwide, and thus it has become a major concern for global food security. Due to an increasing world population, droughts could lead to serious food shortages by 2050. The situation may worsen due to predicated climatic changes that may increase the frequency, duration and severity of droughts. Hence, there is an urgent need to improve our understanding of the complex mechanisms associated with drought tolerance and to develop modern crop varieties that are more resilient to drought. Identification of the genes responsible for drought tolerance in plants will contribute to our understanding of the molecular mechanisms that could enable crop plants to respond to drought. The discovery of novel drought related genes, the analysis of their expression patterns in response to drought, and determination of the functions these genes play in drought adaptation will provide a base to develop effective strategies to enhance the drought tolerance of crop plants. Plant breeding efforts to increase crop yields in dry environments have been slow to date mainly due to our poor understanding of the molecular and genetic mechanisms involved in how plants respond to drought. In addition, when it comes to combining favourable alleles, there are practical obstacles to developing superior high yielding genotypes fit for drought prone environments. Drought Tolerance in Plants, Vol 2: Molecular and Genetic Perspectives combines novel topical findings, regarding the major molecular and genetic events associated with drought tolerance, with contemporary crop improvement approaches. This volume is unique as it makes available for its readers not only extensive reports of existing facts and data, but also practical knowledge and overviews of state-of-the-art technologies, across the biological fields, from plant breeding using classical and molecular genetic information, to the modern omic technologies, that are now being used in drought tolerance research to breed drought-related traits into modern crop varieties. This book is useful for teachers and researchers in the fields of plant breeding, molecular biology and biotechnology.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Analytical Modelling of Fuel Cells
Andrei A. Kulikovsky Hardcover R4,226 Discovery Miles 42 260
The Genuine Works of Flavius Josephus…
Flavius Josephus, Samuel Burder, … Hardcover R1,051 Discovery Miles 10 510
New Promising Electrochemical Systems…
V. Barsukov, F. Beck Hardcover R7,932 Discovery Miles 79 320
Ultra-Link UL-CAT602000 CAT6 20m Network…
R118 Discovery Miles 1 180
Faith & Courage - Praying with Mandela
Thabo Makgoba Paperback R370 R330 Discovery Miles 3 300
Goobay Full HD SVGA Monitor 1.8m…
R189 R149 Discovery Miles 1 490
A Modern History of New Haven and…
Everett Gleason Hill Paperback R715 Discovery Miles 7 150
Sabotage - Eskom Under Siege
Kyle Cowan Paperback  (2)
R340 R314 Discovery Miles 3 140
Rich Herrin A Head Coach Ahead of his…
Matt Wynn Hardcover R1,158 Discovery Miles 11 580
Problems of Geocosmos-2018 - Proceedings…
Tatiana B. Yanovskaya, Andrei Kosterov, … Hardcover R4,058 Discovery Miles 40 580

 

Partners