Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 17 of 17 matches in All Departments
Multimedia represents information in novel and varied formats. One of the most prevalent examples of continuous media is video. Extracting underlying data from these videos can be an arduous task. From video indexing, surveillance, and mining, complex computational applications are required to process this data. Intelligent Analysis of Multimedia Information is a pivotal reference source for the latest scholarly research on the implementation of innovative techniques to a broad spectrum of multimedia applications by presenting emerging methods in continuous media processing and manipulation. This book offers a fresh perspective for students and researchers of information technology, media professionals, and programmers.
Image data has portrayed immense potential as a foundation of information for numerous applications. Recent trends in multimedia computing have witnessed a rapid growth in digital image collections, resulting in a need for increased image data management. Feature Dimension Reduction for Content-Based Image Identification is a pivotal reference source that explores the contemporary trends and techniques of content-based image recognition. Including research covering topics such as feature extraction, fusion techniques, and image segmentation, this book explores different theories to facilitate timely identification of image data and managing, archiving, maintaining, and extracting information. This book is ideally designed for engineers, IT specialists, researchers, academicians, and graduate-level students seeking interdisciplinary research on image processing and analysis.
As the most natural and convenient means of conveying or transmitting information, images play a vital role in our daily lives. Image processing is now of paramount importance in the computer vision research community, and proper processing of two-dimensional (2D) real-life images plays a key role in many real-life applications as well as commercial developments. Intelligent Multidimensional Data and Image Processing is a vital research publication that contains an in-depth exploration of image processing techniques used in various applications, including how to handle noise removal, object segmentation, object extraction, and the determination of the nearest object classification and its associated confidence level. Featuring coverage on a broad range of topics such as object detection, machine vision, and image conversion, this book provides critical research for scientists, computer engineers, professionals, researchers, and academicians seeking current research on solutions for new challenges in 2D and 3D image processing.
Quantum-enhanced machine learning refers to quantum algorithms that solve tasks in machine learning, thereby improving a classical machine learning method. Such algorithms typically require one to encode the given classical dataset into a quantum computer, so as to make it accessible for quantum information processing. After this, quantum information processing routines can be applied and the result of the quantum computation is read out by measuring the quantum system. While many proposals of quantum machine learning algorithms are still purely theoretical and require a full-scale universal quantum computer to be tested, others have been implemented on small-scale or special purpose quantum devices.
This book explains efficient solutions for segmenting the intensity levels of different types of multilevel images. The authors present hybrid soft computing techniques, which have advantages over conventional soft computing solutions as they incorporate data heterogeneity into the clustering/segmentation procedures. This is a useful introduction and reference for researchers and graduate students of computer science and electronics engineering, particularly in the domains of image processing and computational intelligence.
This book proposes soft computing techniques for segmenting real-life images in applications such as image processing, image mining, video surveillance, and intelligent transportation systems. The book suggests hybrids deriving from three main approaches: fuzzy systems, primarily used for handling real-life problems that involve uncertainty; artificial neural networks, usually applied for machine cognition, learning, and recognition; and evolutionary computation, mainly used for search, exploration, efficient exploitation of contextual information, and optimization. The contributed chapters discuss both the strengths and the weaknesses of the approaches, and the book will be valuable for researchers and graduate students in the domains of image processing and computational intelligence.
This book gathers extended versions of papers presented at DoSIER 2021 (the 2021 Third Doctoral Symposium on Intelligence Enabled Research, held at Cooch Behar Government Engineering College, West Bengal, India, during November 12-13, 2021). The papers address the rapidly expanding research area of computational intelligence, which, no longer limited to specific computational fields, has since made inroads in signal processing, smart manufacturing, predictive control, robot navigation, smart cities, and sensor design, to name but a few. Presenting chapters written by experts active in these areas, the book offers a valuable reference guide for researchers and industrial practitioners alike and inspires future studies.
Human Action Recognition is a challenging area presently. The vigor of research effort directed towards this domain is self indicative of this. With the ever-increasing involvement of Computational Intelligence in our day to day applications, the necessity of human activity recognition has been able to make its presence felt to the concerned research community. The primary drive of such an effort is to equip the computing system capable of recognizing and interpreting human activities from posture, pose, gesture, facial expression etc. The intent of human activity recognition is a formidable component of cognitive science in which researchers are actively engaged of late. Features: A systematic overview of the state-of-the-art in computational intelligence techniques for human action recognition. Emphasized on different intelligent techniques to recognize different human actions. Discussed about the automation techniques to handle human action recognition. Recent research results and some pointers to future advancements in this arena. In the present endeavour the editors intend to come out with a compilation that reflects the concerns of relevant research community. The readers would be able to come across some of the latest findings of active researchers of the concerned field. It is anticipated that this treatise shall be useful to the readership encompassing students at undergraduate and postgraduate level, researchers active as well as aspiring, not to speak of the senior researchers.
Human Action Recognition is a challenging area presently. The vigor of research effort directed towards this domain is self indicative of this. With the ever-increasing involvement of Computational Intelligence in our day to day applications, the necessity of human activity recognition has been able to make its presence felt to the concerned research community. The primary drive of such an effort is to equip the computing system capable of recognizing and interpreting human activities from posture, pose, gesture, facial expression etc. The intent of human activity recognition is a formidable component of cognitive science in which researchers are actively engaged of late. Features: A systematic overview of the state-of-the-art in computational intelligence techniques for human action recognition. Emphasized on different intelligent techniques to recognize different human actions. Discussed about the automation techniques to handle human action recognition. Recent research results and some pointers to future advancements in this arena. In the present endeavour the editors intend to come out with a compilation that reflects the concerns of relevant research community. The readers would be able to come across some of the latest findings of active researchers of the concerned field. It is anticipated that this treatise shall be useful to the readership encompassing students at undergraduate and postgraduate level, researchers active as well as aspiring, not to speak of the senior researchers.
This volume comprises six well-versed contributed chapters devoted to report the latest fi ndings on the applications of machine learning for big data analytics. Big data is a term for data sets that are so large or complex that traditional data processing application software is inadequate to deal with them. The possible challenges in this direction include capture, storage, analysis, data curation, search, sharing, transfer, visualization, querying, updating and information privacy. Big data analytics is the process of examining large and varied data sets - i.e., big data - to uncover hidden patterns, unknown correlations, market trends, customer preferences and other useful information that can help organizations make more-informed business decisions. This volume is intended to be used as a reference by undergraduate and post graduate students of the disciplines of computer science, electronics and telecommunication, information science and electrical engineering. THE SERIES: FRONTIERS IN COMPUTATIONAL INTELLIGENCE The series Frontiers In Computational Intelligence is envisioned to provide comprehensive coverage and understanding of cutting edge research in computational intelligence. It intends to augment the scholarly discourse on all topics relating to the advances in artifi cial life and machine learning in the form of metaheuristics, approximate reasoning, and robotics. Latest research fi ndings are coupled with applications to varied domains of engineering and computer sciences. This field is steadily growing especially with the advent of novel machine learning algorithms being applied to different domains of engineering and technology. The series brings together leading researchers that intend to continue to advance the fi eld and create a broad knowledge about the most recent research.
Computer vision and machine intelligence paradigms are prominent in the domain of medical image applications, including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics. Medical image analysis and understanding are daunting tasks owing to the massive influx of multi-modal medical image data generated during routine clinal practice. Advanced computer vision and machine intelligence approaches have been employed in recent years in the field of image processing and computer vision. However, due to the unstructured nature of medical imaging data and the volume of data produced during routine clinical processes, the applicability of these meta-heuristic algorithms remains to be investigated. Advanced Machine Vision Paradigms for Medical Image Analysis presents an overview of how medical imaging data can be analyzed to provide better diagnosis and treatment of disease. Computer vision techniques can explore texture, shape, contour and prior knowledge along with contextual information, from image sequence and 3D/4D information which helps with better human understanding. Many powerful tools have been developed through image segmentation, machine learning, pattern classification, tracking, and reconstruction to surface much needed quantitative information not easily available through the analysis of trained human specialists. The aim of the book is for medical imaging professionals to acquire and interpret the data, and for computer vision professionals to learn how to provide enhanced medical information by using computer vision techniques. The ultimate objective is to benefit patients without adding to already high healthcare costs.
This book proposes soft computing techniques for segmenting real-life images in applications such as image processing, image mining, video surveillance, and intelligent transportation systems. The book suggests hybrids deriving from three main approaches: fuzzy systems, primarily used for handling real-life problems that involve uncertainty; artificial neural networks, usually applied for machine cognition, learning, and recognition; and evolutionary computation, mainly used for search, exploration, efficient exploitation of contextual information, and optimization. The contributed chapters discuss both the strengths and the weaknesses of the approaches, and the book will be valuable for researchers and graduate students in the domains of image processing and computational intelligence.
This book explains efficient solutions for segmenting the intensity levels of different types of multilevel images. The authors present hybrid soft computing techniques, which have advantages over conventional soft computing solutions as they incorporate data heterogeneity into the clustering/segmentation procedures. This is a useful introduction and reference for researchers and graduate students of computer science and electronics engineering, particularly in the domains of image processing and computational intelligence.
Applied Smart Health Care Informatics Explores how intelligent systems offer new opportunities for optimizing the acquisition, storage, retrieval, and use of information in healthcare Applied Smart Health Care Informatics explores how health information technology and intelligent systems can be integrated and deployed to enhance healthcare management. Edited and authored by leading experts in the field, this timely volume introduces modern approaches for managing existing data in the healthcare sector by utilizing artificial intelligence (AI), meta-heuristic algorithms, deep learning, the Internet of Things (IoT), and other smart technologies. Detailed chapters review advances in areas including machine learning, computer vision, and soft computing techniques, and discuss various applications of healthcare management systems such as medical imaging, electronic medical records (EMR), and drug development assistance. Throughout the text, the authors propose new research directions and highlight the smart technologies that are central to establishing proactive health management, supporting enhanced coordination of care, and improving the overall quality of healthcare services. Provides an overview of different deep learning applications for intelligent healthcare informatics management Describes novel methodologies and emerging trends in artificial intelligence and computational intelligence and their relevance to health information engineering and management Proposes IoT solutions that disseminate essential medical information for intelligent healthcare management Discusses mobile-based healthcare management, content-based image retrieval, and computer-aided diagnosis using machine and deep learning techniques Examines the use of exploratory data analysis in intelligent healthcare informatics systems Applied Smart Health Care Informatics: A Computational Intelligence Perspective is an invaluable text for graduate students, postdoctoral researchers, academic lecturers, and industry professionals working in the area of healthcare and intelligent soft computing.
Interdisciplinary approaches using Machine Learning and Deep Learning techniques are smartly addressing real life challenges and have emerged as an inseparable element of disruption in current times. Applications of Disruptive Technology in Management practices are an ever interesting domain for researchers and professionals. This volume entitled Emerging Trends in Disruptive Technology Management for Sustainable Development has attempted to collate five different interesting research approaches that have innovatively reflected diverse potential of disruptive trends in the era of 4th. Industrial Revolution. The uniqueness of the volume is going to cater the entrepreneurs and professionals in the domain of artificial intelligence, machine learning, deep learning etc. with its unique propositions in each of the chapters. The volume is surely going to be a significant source of knowledge and inspiration to those aspiring minds endeavouring to shape their futures in the area of applied research in machine learning and computer vision. The expertise and experiences of the contributing authors to this volume is encompassing different fields of proficiencies. This has set an excellent prelude to discover the correlation among multidisciplinary approaches of innovation. Covering a broad range of topics initiating from IoT based sustainable development to crowd sourcing concepts with a blend of applied machine learning approaches has made this volume a must read to inquisitive wits. Features Assorted approaches to interdisciplinary research using disruptive trends Focus on application of disruptive technology in technology management Focus on role of disruptive technology on sustainable development Promoting green IT with disruptive technology The book is meant to benefit several categories of students and researchers. At the students' level, this book can serve as a treatise/reference book for the special papers at the masters level aimed at inspiring possibly future researchers. Newly inducted PhD aspirants would also find the contents of this book useful as far as their compulsory course-works are concerned. At the researchers' level, those interested in interdisciplinary research would also be benefited from the book. After all, the enriched interdisciplinary contents of the book would always be a subject of interest to the faculties, existing research communities and new research aspirants from diverse disciplines of the concerned departments of premier institutes across the globe. This is expected to bring different research backgrounds (due to its cross platform characteristics) close to one another to form effective research groups all over the world. Above all, availability of the book should be ensured to as much universities and research institutes as possible through whatever graceful means it may be. Hope this volume will cater as a ready reference to your quest for diving deep into the ocean of technology management for 4th. Industrial Revolution.
This book gathers extended versions of papers presented at DoSIER 2021 (the 2021 Third Doctoral Symposium on Intelligence Enabled Research, held at Cooch Behar Government Engineering College, West Bengal, India, during November 12–13, 2021). The papers address the rapidly expanding research area of computational intelligence, which, no longer limited to specific computational fields, has since made inroads in signal processing, smart manufacturing, predictive control, robot navigation, smart cities, and sensor design, to name but a few. Presenting chapters written by experts active in these areas, the book offers a valuable reference guide for researchers and industrial practitioners alike and inspires future studies.
Advanced Data Mining Tools and Methods for Social Computing explores advances in the latest data mining tools, methods, algorithms and the architectures being developed specifically for social computing and social network analysis. The book reviews major emerging trends in technology that are supporting current advancements in social networks, including data mining techniques and tools. It also aims to highlight the advancement of conventional approaches in the field of social networking. Chapter coverage includes reviews of novel techniques and state-of-the-art advances in the area of data mining, machine learning, soft computing techniques, and their applications in the field of social network analysis.
|
You may like...
Narrative of a Voyage to the South Seas…
Charles Medyett Goodridge
Paperback
R509
Discovery Miles 5 090
|