![]() |
![]() |
Your cart is empty |
||
Showing 1 - 2 of 2 matches in All Departments
Biomedical Signal Analysis for Connected Healthcare provides rigorous coverage on several generations of techniques, including time domain approaches for event detection, spectral analysis for interpretation of clinical events of interest, time-varying signal processing for understanding dynamical aspects of complex biomedical systems, the application of machine learning principles in enhanced clinical decision-making, the application of sparse techniques and compressive sensing in providing low-power applications that are essential for wearable designs, the emerging paradigms of the Internet of Things, and connected healthcare.
Comprehensive resource covering recent developments, applications of current interest, and advanced techniques for biomedical signal analysis Biomedical Signal Analysis provides extensive insight into digital signal processing techniques for filtering, identification, characterization, classification, and analysis of biomedical signals with the aim of computer-aided diagnosis, taking a unique approach by presenting case studies encountered in the authors’ research work. Each chapter begins with the statement of a biomedical signal problem, followed by a selection of real-life case studies and illustrations with the associated signals. Signal processing, modeling, or analysis techniques are then presented, starting with relatively simple "textbook" methods, followed by more sophisticated research-informed approaches. Each chapter concludes with solutions to practical applications. Illustrations of real-life biomedical signals and their derivatives are included throughout. The third edition expands on essential background material and advanced topics without altering the underlying pedagogical approach and philosophy of the successful first and second editions. The book is enhanced by a large number of study questions and laboratory exercises as well as an online repository with solutions to problems and data files for laboratory work and projects. Biomedical Signal Analysis provides theoretical and practical information on: The origin and characteristics of several biomedical signals Analysis of concurrent, coupled, and correlated processes, with applications in monitoring of sleep apnea Filtering for removal of artifacts, random noise, structured noise, and physiological interference in signals generated by stationary, nonstationary, and cyclostationary processes Detection and characterization of events, covering methods for QRS detection, identification of heart sounds, and detection of the dicrotic notch Analysis of waveshape and waveform complexity Interpretation and analysis of biomedical signals in the frequency domain Mathematical, electrical, mechanical, and physiological modeling of biomedical signals and systems Sophisticated analysis of nonstationary, multicomponent, and multisource signals using wavelets, time-frequency representations, signal decomposition, and dictionary-learning methods Pattern classification and computer-aided diagnosis Biomedical Signal Analysis is an ideal learning resource for senior undergraduate and graduate engineering students. Introductory sections on signals, systems, and transforms make this book accessible to students in disciplines other than electrical engineering.
|
![]() ![]() You may like...
Gender in Spanish Urban Spaces…
Maria C. DiFrancesco, Debra J. Ochoa
Hardcover
R3,194
Discovery Miles 31 940
A Discourse Delivered Before the Society…
Charles Jared Ingersoll
Paperback
R397
Discovery Miles 3 970
Adaptation and Evolution in Marine…
Guido Di Prisco, Cinzia Verde
Hardcover
R2,881
Discovery Miles 28 810
|