Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
This book introduces the reader to the use of Monte Carlo methods for solving practical problems in radiation transport, and will also serve as a reference work for practitioners in the field. It assumes the reader has a general knowledge of calculus and radiation physics, and a knowledge of Fortran programming, but assumes no prior knowledge of stochastic methods or statistical physics. The subject is presented by a combination of theoretical development and practical calculations. Because Monte Carlo methods are closely linked to the use of computers, from the beginning the reader is taught to convert the theoretical constructs developed in the text into functional software for use on a personal computer. Example problems provide the reader with an in-depth understanding of the concepts presented and lead to the production of a unique learning tool, a probabilistic framework code that models in a simple manner the features of production of Monte Carlo transport codes. This framework code is developed in stages such that every function is understood, tested, and demonstrated - random sampling, generating random numbers, implementing geometric models, using variance reduction, tracking particles in a random walk, testing the thoroughness with which the problem phase space is sampled, scoring detectors, and obtaining estimates of uncertainty in results. Advanced topics covered include criticality, correlated sampling, adjoint transport, and neutron thermalization. Monte Carlo codes can produce highly precise wrong answers. The probability of this occurring is increased if production codes are run as opaque, black boxes' of software. This text attempts to make Monte Carlo into acomprehensible, usable tool for solving practical transport problems. It is suitable for advanced undergraduate and graduate students and researchers who wish to expand their knowledge of the Monte Carlo technique.
The mathematical technique of Monte Carlo, as applied to the transport of sub-atomic particles, has been described in numerous reports and books since its formal development in the 1940s. Most of these instructional efforts have been directed either at the mathematical basis of the technique or at its practical application as embodied in the several large, formal computer codes available for performing Monte Carlo transport calculations. This book attempts to fill what appears to be a gap in this Monte Carlo literature between the mathematics and the software. Thus, while the mathematical basis for Monte Carlo transport is covered in some detail, emphasis is placed on the application of the technique to the solution of practical radiation transport problems. This is done by using the PC as the basic teaching tool. This book assumes the reader has a knowledge of integral calculus, neutron transport theory, and Fortran programming. It also assumes the reader has available a PC with a Fortran compiler. Any PC of reasonable size should be adequate to reproduce the examples or solve the exercises contained herein. The authors believe it is important for the reader to execute these examples and exercises, and by doing so to become accomplished at preparing appropriate software for solving radiation transport problems using Monte Carlo. The step from the software described in this book to the use of production Monte Carlo codes should be straightforward.
In Volume 1, A Monte Carlo Primer - A Practical Approach to Radiation Transport (the "Primer"), we attempt to provide a simple, convenient, and step-by-step approach to the development, basic understanding, and use of Monte Carlo methods in radiation transport. Using the PC, the Primer begins by developing basic Monte Carlo codes to solve simple transport problems, then introduces a teaching tool, the Probabilistic Framework Code (PFC), as a standard platform for assembling, testing, and executing the various Monte Carlo techniques that are presented. This second volume attempts to continue this approach by using both custom Monte Carlo codes and PFC to apply the concepts explained in the Primer to obtain solutions to the exercises given at the end of each chapter in the Primer. A relatively modest number of exercises is included in the Primer. Some ambiguity is left in the statement of many of the exercises because the intent is not to have the user write a particular, uniquely correct piece of coding that produces a specific number as a result, but rather to encourage the user to think about the problems and develop further the concepts explained in the text. Because in most cases there is more than one way to solve a Monte Carlo transport problem, we believe that working with the concepts illustrated by the exercises is more important than obtaining anyone particular solution.
|
You may like...
Westworld - Season 4 - The Choice
Evan Rachel Wood, Thandiwe Newton, …
DVD
R371
Discovery Miles 3 710
|