Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
This book is designed as a text for a first-year graduate algebra course. The choice of topics is guided by the underlying theme of modules as a basic unifying concept in mathematics. Beginning with standard topics in groups and ring theory, the authors then develop basic module theory, culminating in the fundamental structure theorem for finitely generated modules over a principal ideal domain. They then treat canonical form theory in linear algebra as an application of this fundamental theorem. Module theory is also used in investigating bilinear, sesquilinear, and quadratic forms. The authors develop some multilinear algebra (Hom and tensor product) and the theory of semisimple rings and modules and apply these results in the final chapter to study group represetations by viewing a representation of a group G over a field F as an F(G)-module. The book emphasizes proofs with a maximum of insight and a minimum of computation in order to promote understanding. However, extensive material on computation (for example, computation of canonical forms) is provided.
This book is designed as a text for a first-year graduate algebra course. As necessary background we would consider a good undergraduate linear algebra course. An undergraduate abstract algebra course, while helpful, is not necessary (and so an adventurous undergraduate might learn some algebra from this book). Perhaps the principal distinguishing feature of this book is its point of view. Many textbooks tend to be encyclopedic. We have tried to write one that is thematic, with a consistent point of view. The theme, as indicated by our title, is that of modules (though our intention has not been to write a textbook purely on module theory). We begin with some group and ring theory, to set the stage, and then, in the heart of the book, develop module theory. Having developed it, we present some of its applications: canonical forms for linear transformations, bilinear forms, and group representations. Why modules? The answer is that they are a basic unifying concept in mathematics. The reader is probably already familiar with the basic role that vector spaces play in mathematics, and modules are a generaliza tion of vector spaces. (To be precise, modules are to rings as vector spaces are to fields."
Galois theory is a mature mathematical subject of particular beauty. Any Galois theory book written nowadays bears a great debt to Emil Artin's classic text "Galois Theory," and this book is no exception. While Artin's book pioneered an approach to Galois theory that relies heavily on linear algebra, this book's author takes the linear algebra emphasis even further. This special approach to the subject together with the clarity of its presentation, as well as the choice of topics covered, has made the first edition of this book a more than worthwhile addition to the literature on Galois Theory. The second edition, with a new chapter on transcendental extensions, will only further serve to make the book appreciated by and approachable to undergraduate and beginning graduate math majors.
Differential forms are utilized as a mathematical technique to
help students, researchers, and engineers analyze and interpret
problems where abstract spaces and structures are concerned, and
when questions of shape, size, and relative positions are involved.
"Differential Forms" has gained high recognition in the
mathematical and scientific community as a powerful computational
tool in solving research problems and simplifying very abstract
problems through mathematical analysis on a computer. "Differential
Forms, 2nd Edition, "is a solid resource for students and
professionals needing a solid general understanding of the
mathematical theory and be able to apply that theory into practice.
Useful applications are offered to investigate a wide range of
problems such as engineers doing risk analysis, measuring computer
output flow or testing complex systems. They can also be used to
determine the physics in mechanical and/or structural design to
ensure stability and structural integrity. The book offers many
recent examples of computations and research applications across
the fields of applied mathematics, engineering, and physics.
This text is one of the first to treat vector calculus using differential forms in place of vector fields and other outdated techniques. Geared towards students taking courses in multivariable calculus, this innovative book aims to make the subject more readily understandable. Differential forms unify and simplify the subject of multivariable calculus, and students who learn the subject as it is presented in this book should come away with a better conceptual understanding of it than those who learn using conventional methods.
|
You may like...
Five Nights at Freddy's Graphic Novel…
Scott Cawthon, Elley Cooper, …
Other merchandize
|