Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This book covers the method of metric distances and its application in probability theory and other fields. The method is fundamental in the study of limit theorems and generally in assessing the quality of approximations to a given probabilistic model. The method of metric distances is developed to study stability problems and reduces to the selection of an ideal or the most appropriate metric for the problem under consideration and a comparison of probability metrics. After describing the basic structure of probability metrics and providing an analysis of the topologies in the space of probability measures generated by different types of probability metrics, the authors study stability problems by providing a characterization of the ideal metrics for a given problem and investigating the main relationships between different types of probability metrics. The presentation is provided in a general form, although specific cases are considered as they arise in the process of finding supplementary bounds or in applications to important special cases. Svetlozar T. Rachev is the Frey Family Foundation Chair of Quantitative Finance, Department of Applied Mathematics and Statistics, SUNY-Stony Brook and Chief Scientist of Finanlytica, USA. Lev B. Klebanov is a Professor in the Department of Probability and Mathematical Statistics, Charles University, Prague, Czech Republic. Stoyan V. Stoyanov is a Professor at EDHEC Business School and Head of Research, EDHEC-Risk Institute-Asia (Singapore). Frank J. Fabozzi is a Professor at EDHEC Business School. (USA)
Long gone are the times when investors could make decisions based on intuition. Modern asset management draws on a wide-range of fields beyond financial theory: economics, financial accounting, econometrics/statistics, management science, operations research (optimization and Monte Carlo simulation), and more recently, data science (Big Data, machine learning, and artificial intelligence). The challenge in writing an institutional asset management book is that when tools from these different fields are applied in an investment strategy or an analytical framework for valuing securities, it is assumed that the reader is familiar with the fundamentals of these fields. Attempting to explain strategies and analytical concepts while also providing a primer on the tools from other fields is not the most effective way of describing the asset management process. Moreover, while an increasing number of investment models have been proposed in the asset management literature, there are challenges and issues in implementing these models. This book provides a description of the tools used in asset management as well as a more in-depth explanation of specialized topics and issues covered in the companion book, Fundamentals of Institutional Asset Management. The topics covered include the asset management business and its challenges, the basics of financial accounting, securitization technology, analytical tools (financial econometrics, Monte Carlo simulation, optimization models, and machine learning), alternative risk measures for asset allocation, securities finance, implementing quantitative research, quantitative equity strategies, transaction costs, multifactor models applied to equity and bond portfolio management, and backtesting methodologies. This pedagogic approach exposes the reader to the set of interdisciplinary tools that modern asset managers require in order to extract profits from data and processes.
The study of heavy-tailed distributions allows researchers to represent phenomena that occasionally exhibit very large deviations from the mean. The dynamics underlying these phenomena is an interesting theoretical subject, but the study of their statistical properties is in itself a very useful endeavor from the point of view of managing assets and controlling risk. In this book, the authors are primarily concerned with the statistical properties of heavy-tailed distributions and with the processes that exhibit jumps. A detailed overview with a Matlab implementation of heavy-tailed models applied in asset management and risk managements is presented. The book is not intended as a theoretical treatise on probability or statistics, but as a tool to understand the main concepts regarding heavy-tailed random variables and processes as applied to real-world applications in finance. Accordingly, the authors review approaches and methodologies whose realization will be useful for developing new methods for forecasting of financial variables where extreme events are not treated as anomalies, but as intrinsic parts of the economic process.
This book covers the method of metric distances and its application in probability theory and other fields. The method is fundamental in the study of limit theorems and generally in assessing the quality of approximations to a given probabilistic model. The method of metric distances is developed to study stability problems and reduces to the selection of an ideal or the most appropriate metric for the problem under consideration and a comparison of probability metrics. After describing the basic structure of probability metrics and providing an analysis of the topologies in the space of probability measures generated by different types of probability metrics, the authors study stability problems by providing a characterization of the ideal metrics for a given problem and investigating the main relationships between different types of probability metrics. The presentation is provided in a general form, although specific cases are considered as they arise in the process of finding supplementary bounds or in applications to important special cases. Svetlozar T. Rachev is the Frey Family Foundation Chair of Quantitative Finance, Department of Applied Mathematics and Statistics, SUNY-Stony Brook and Chief Scientist of Finanlytica, USA. Lev B. Klebanov is a Professor in the Department of Probability and Mathematical Statistics, Charles University, Prague, Czech Republic. Stoyan V. Stoyanov is a Professor at EDHEC Business School and Head of Research, EDHEC-Risk Institute-Asia (Singapore). Frank J. Fabozzi is a Professor at EDHEC Business School. (USA)
|
You may like...
|