Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
The book focuses on novel interpenetrating polymer network (IPN)/semi-IPN technologies for drug delivery and biomedical applications. The dynamism of the design and development of interpenetrating network polymers is based on their ability to provide free volume for the easy encapsulation of drugs in the three-dimensional network structure obtained by cross-linking two or more polymer networks. Natural polymer-based IPNs can deliver drugs at a controlled rate over an extended period of time, while novel IPNs ensure better mechanical strength and sustained/ controlled drug-delivery properties. This book presents an overview of the use of this technology to fabricate nanomedicine, hydrogels, nanoparticles, and microparticles, thereby unlocking IPN's potential in the area of drug delivery and biomedical engineering. It also discusses applications of IPN systems in cancer therapy and tissue engineering, and describes the various IPN systems and their wide usage and applications in drug delivery.
This book is focused on marine based biomedical carriers for delivery of therapeutics. Marine biomaterials and bio-based carriers show wide applications in pharmaceutical as well as biomedical fields for delivery of small and large molecules. Biomaterial-based composites, scaffolds or matrix systems are promising systems for controlled and prolonged release of drug in target site and control the premature release of drugs or bioactive compounds. This book discusses the targeted delivery of drugs and therapeutic applications. It also describes the use of marine biopolymers in cancer therapy. Different chapters describe the tissue engineering techniques to develop these carriers. The marine biomaterial-based systems are widely used for tissue engineering, and biomedical imaging. This book is meant for industry experts, students and researchers in the area of pharmaceutical sciences, biomedical engineering and material science and pharmacology.
Thanks to their unique properties, chitosan and chitosan-based materials have numerous applications in the field of biomedicine, especially in drug delivery. This book examines biomedical applications of functional chitosan, exploring the various functions and applications in the development of chitosan-based biomaterials. It also describes the chemical structure of chitosan and discusses the relationship between their structure and functions, providing a theoretical basis for the design of biomaterials. Lastly, it reviews chemically modified and composite materials of chitin and chitosan derivatives for biomedical applications, such as tissue engineering, nanomedicine, drug delivery, and gene delivery.
Micro- and Nanoengineered Gum-Based Biomaterials for Drug Delivery and Biomedical Applications focuses on micro- and nanotechnology in gums and biopolymers as drug and biomolecule carriers and their applications in biomedicine. Currently, natural gums and polymers are widely utilized as biocarrier systems, to deliver drugs and biomolecules to the target site, for prolonged release and the desired therapeutic effect. Natural gums and polymers are important because they are easily available from natural sources and are characteristically biodegradable, biocompatible, and nontoxic. Natural gums and polymers are also chemically modified with other polymers, in the presence of cross-linking agents, to develop scaffolds, matrices, composites, and interpenetrating polymer networks using micro- and nanotechnology. The book also discusses biological applications, such as gene delivery, cancer therapy, tissue engineering, bioimaging, and theranostics. This book is an important reference source for biomaterials scientists, biomedical engineers, and pharmaceutical scientists, who are looking to increase their understanding of how micro- and nanoengineered biomaterials are being used to create more efficient gum-based drug delivery systems.
The book focuses on novel interpenetrating polymer network (IPN)/semi-IPN technologies for drug delivery and biomedical applications. The dynamism of the design and development of interpenetrating network polymers is based on their ability to provide free volume for the easy encapsulation of drugs in the three-dimensional network structure obtained by cross-linking two or more polymer networks. Natural polymer-based IPNs can deliver drugs at a controlled rate over an extended period of time, while novel IPNs ensure better mechanical strength and sustained/ controlled drug-delivery properties. This book presents an overview of the use of this technology to fabricate nanomedicine, hydrogels, nanoparticles, and microparticles, thereby unlocking IPN's potential in the area of drug delivery and biomedical engineering. It also discusses applications of IPN systems in cancer therapy and tissue engineering, and describes the various IPN systems and their wide usage and applications in drug delivery.
Thanks to their unique properties, chitosan and chitosan-based materials have numerous applications in the field of biomedicine, especially in drug delivery. This book examines biomedical applications of functional chitosan, exploring the various functions and applications in the development of chitosan-based biomaterials. It also describes the chemical structure of chitosan and discusses the relationship between their structure and functions, providing a theoretical basis for the design of biomaterials. Lastly, it reviews chemically modified and composite materials of chitin and chitosan derivatives for biomedical applications, such as tissue engineering, nanomedicine, drug delivery, and gene delivery.
This book explores in depth a wide range of functional biomaterials-based systems for drug, gene delivery, and biomedical aspects. The chapters cover newer technologies such as polymeric micelle, pH-responsive biomaterials, stimuli-responsive hydrogels, silk fibroin, inorganic biomaterials, synthetic biomaterials, 3D printed biomaterials, metallic biomaterials, ceramic and hybrid biomaterials. It also describes the theranostic approaches for cancer therapy, the biomaterials-based nanofibers scaffolds in tissue engineering, as well as the strategies applications of metallic biomaterials for the medical and dental prosthetic field. This newer and updated approach will be attractive for biomedical engineering students working on materials science in the development of novel drug delivery strategies. The book will be an important reference for researchers and professionals working on biomaterial research in the pharmaceutical and medical fields.
Polysaccharides are natural, renewable materials that are biodegradable and biocompatible, making them ideal subjects for biomedical applications. This book focusses on the main polysaccharides, including but not limited to chitosan, cellulose, alginate, dextran, guar gum, gellan gum, pullulan, locust bean gum, pectin, xanthan gum, starch, hyaluronan and carrageenan, and their applications in drug delivery, imaging and tissue engineering. With contributions from around the world, the editors have pulled together a tightly curated set of chapters which showcase how polysaccharide-based materials are employed in a range of biomedical systems. The end result is a book in which the reader can gain a sound overview of this important class of material for biomedical applications, without scouring journal articles. Those working in materials science, biomedical and chemical engineering, and pharmaceutical technologies will find this a must-have reference.
Biopolymer-Based Composites: Drug Delivery and Biomedical Applications presents a comprehensive review on recent developments in biopolymer-based composites and their use in drug delivery and biomedical applications. The information contained in this book is critical for the more efficient use of composites, as detailed up-to-date information is a pre-requirement. The information provided brings cutting-edge developments to the attention of young investigators to encourage further advances in the field of bio-composite research. Currently, biopolymers are being investigated for the design of various drug delivery and biomedical devices due to their non-toxic, biodegradable and biocompatible nature. Mostly, biopolymer-based solid orals, gels, hydrogel beads, and transdermal matrices have been designed in order to control drug/protein release in simulated bio-fluids.
|
You may like...
|