Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 49 matches in All Departments
This book delves into the mechanical analysis of the nanomaterials and polymer nanocomposite materials by shedding light on the mechanical performance of nanomaterials, elasticity and viscoelasticity behaviors of polymer nanocomposites, the laminate and sandwich theories, durability and fatigue behaviors. The chapters in this book bring together leading experts in the field to provide an update of the latest scientific results and a fully holistic understanding of the mechanical performance of these materials. The book interests the academic and industrial researchers, R&D managers and engineers working in material and nanomaterial sciences, polymer science and technology, automotive and aerospace engineering, construction and sporting goods, etc. The book also targets the readers that may have no prior knowledge about composite and nanocomposite materials.
This book describes crucial aspects related to the additive and subtractive manufacturing of different composites. The first half of this book mainly deals with the various types of composite fabrication methods along with the introduction, features and mechanisms and also the processing of composite materials via additive manufacturing route. Also, the thermal, mechanical, physical and chemical properties relevant to the processing of composite materials are included in the chapters. The second half of this book primarily demonstrates an extensive section on the different types of additive manufacturing processes like selective laser sintering, selective laser melting, stereolithography, fused deposition modeling and material jetting used to fabricate the metals and polymers. Also, the chapters address the complete description of fabrication processes for metal matrix composites and polymer matrix composites. Moreover, the different methods adopted such as short peening, micro-machining, heat-treatment and solution treatment to improve the surface improvement are well discussed. This book gives many helps to researchers and students in the fields of the additive and subtractive manufacturing of different composites.
This book explores the recent advances in the field of shape memory polymers, whose ease of manufacturing and wide range of potential applications have spurred interest in the field. The book presents details about the synthesis, processing, characterization, and applications of shape memory polymers, their blends and composites. It provides a correlation of physical properties of shape memory polymers with macro, micro and nano structures. The contents of this book will be of interest to researchers across academia and industry.
This book presents a unified approach to fracture behavior of natural and synthetic fiber-reinforced polymer composites on the basis of fiber orientation, the addition of fillers, characterization, properties and applications. In addition, the book contains an extensive survey of recent improvements in the research and development of fracture analysis of FRP composites that are used to make higher fracture toughness composites in various applications.The FRP composites are an emerging area in polymer science with many structural applications. The rise in materials failure by fracture has forced scientists and researchers to develop new higher strength materials for obtaining higher fracture toughness. Therefore, further knowledge and insight into the different modes of fracture behavior of FRP composites are critical to expanding the range of their application.
This book provides a systematic and comprehensive account of the recent developments in the recycling of plastic waste material. It presents state-of-the-art procedures for recycling of plastics from different sources and various characterization methods adopted in analyzing their properties. In addition, it looks into properties, processing, and applications of recycled plastic products as one of the drivers for sustainable recycling plastics especially in developing countries. This book proves a useful reference source for both engineers and researchers working in composite materials science as well as the students attending materials science, physics, chemistry, and engineering courses.
Food Packaging: Advanced Materials, Technologies, and Innovations is a one-stop reference for packaging materials researchers working across various industries. With chapters written by leading international researchers from industry, academia, government, and private research institutions, this book offers a broad view of important developments in food packaging. Presents an extensive survey of food packaging materials and modern technologies Demonstrates the potential of various materials for use in demanding applications Discusses the use of polymers, composites, nanotechnology, hybrid materials, coatings, wood-based, and other materials in packaging Describes biodegradable packaging, antimicrobial studies, and environmental issues related to packaging materials Offers current status, trends, opportunities, and future directions Aimed at advanced students, research scholars, and professionals in food packaging development, this application-oriented book will help expand the reader’s knowledge of advanced materials and their use of innovation in food packaging.
Emerging microbial and viral infections are a serious challenge to health, safety, and economics around the world. Antimicrobial and antiviral technologies are needed to disrupt the progression and replication of bacteria and viruses and to counter their rapidly evolving resistance. This book discusses recent developments in materials science and engineering in combating infectious diseases and explores advances in antimicrobial and antiviral materials, including polymers, metals, and ceramics and their applications in the fight against pathogens. Features * Covers progress in biomimetic antimicrobial and antiviral materials and antimicrobial/antiviral bulk materials and coatings * Describes modern methods for disinfection of biomedical materials against microbial and viral infection resistance, especially for depressing novel coronavirus (COVID-19) * Details methods to improve material properties to have a longer service life in combating infection * Emphasizes chemical, physical, mechanical, tribological, and antimicrobial/antiviral properties * Offers current and future applications of emerging antimicrobial/antiviral technologies This book will be of interest to materials researchers and industry professionals focusing on antimicrobial and antiviral applications.
This book describes the forcefields/interatomic potentials that are used in the atomistic-scale and molecular dynamics simulations. It covers mechanisms, salient features, formulations, important aspects and case studies of various forcefields utilized for characterizing various materials (such as nuclear materials and nanomaterials) and applications. This book gives many help to students and researchers who are studying the forcefield potentials and introduces various applications of atomistic-scale simulations to professors who are researching molecular dynamics.
This book comprehensively covers the different topics of wood polymer composite materials mainly synthesis methods for the composite materials, various characterization techniques to study the superior properties and insights on potential advanced applications. It also discusses the chemistry, fabrication process, properties, applications, recycling and life cycle assessment of wood polymer composites. This is a useful reference source for both engineers and researchers working in composite materials science as well as the students attending materials science, physics, chemistry and engineering courses.
This book introduces the approach of Machine Learning (ML) based predictive models in the design of composite materials to achieve the required properties for certain applications. ML can learn from existing experimental data obtained from very limited number of experiments and subsequently can be trained to find solutions of the complex non-linear, multi-dimensional functional relationships without any prior assumptions about their nature. In this case the ML models can learn from existing experimental data obtained from (1) composite design based on various properties of the matrix material and fillers/reinforcements (2) material processing during fabrication (3) property relationships. Modelling of these relationships using ML methods significantly reduce the experimental work involved in designing new composites, and therefore offer a new avenue for material design and properties. The book caters to students, academics and researchers who are interested in the field of material composite modelling and design.
This edited book focuses on processing, properties, and applications of bast fiber and its composites written by renowned researchers and academicians. The contents focus on properties such as rheological and dielectric of bast fiber composites. It also discusses its dynamic mechanical analysis, thermal stability of polymer composites reinforced with bast fibers, and water absorption behavior of bast fiber incorporated polymer composites. This book will be beneficial to both the industry and academia as it highlights possible avenues of future research.
This book gives a comprehensive overview of bionanocomposites, a class of materials that consist of a biopolymer matrix which is embedded with nanoparticles and natural fibres as reinforcement to produce novel material and achieve superior physico-chemical and mechanical properties. The book looks into the synthesis of various forms of nanoparticles, the fabrication methods, and the characterization of bionanocomposites. It also includes topics related to the sustainability and life prediction of bionanocomposites such as biodegradability, recycling, and re-use. An important aspect in the designing of bionanocomposites includes computational modeling, and the suitability of the bionanocomposites in various applications is presented. This book appeals to students, researchers, and scientists looking to gain fundamental knowledge, know about recent advancements in the research on bionanocomposites and their applications.
Highlights the utilization of nanofillers. Investigates the moisture absorption and ageing on the physio-chemical, mechanical, thermal properties of the vinyl ester-based composites. Considers the influence of hybridization, fibre architecture, and fibre-ply orientation on the mechanical and thermal properties of vinyl ester-based biocomposites. Discusses the effects of the alkali treatment. Chapters are written by global experts to cover a diverse scope of industry applications for fibre-reinforced polymer composites.
This book covers the topic of degradation phenomenon of natural fiber-based composites (NFC) under various aging conditions and proposes suitable solutions to improve the response of natural fiber-reinforced composite to aging conditions such as moisture, seawater, hygrothermal, and natural and accelerated weathering. The information provided by the book plays a vital role in the durability and shelf life of the composites as well as broadening the scope of outdoor application for natural fiber-based composites. The book will be appropriate for researchers and scientist who are interested in the application of natural fiber composites in various fields.
This book comprehensively summarizes the recent achievements and trends in encapsulation of micro- and nanocontainers for applications in smart materials. It covers the fundamentals of processing and techniques for encapsulation with emphasis on preparation, properties, application, and future prospects of encapsulation process for smart applications in pharmaceuticals, textiles, biomedical, food packaging, composites, friction/wear, phase change materials, and coatings. Academics, researchers, scientists, engineers, and students in the field of smart materials will benefit from this book.
This book summarizes recent developments in epoxy blends. It emphasizes new challenges for the synthesis, characterization, and properties of biofibers and biopolymers. It provides updates on all the important areas of biofibers and biopolymers in a comprehensive fashion, including synthesis, processing, characterisation and application. It provides a a one-stop reference for researchers and those working in industry and government. The book correlates macro, micro and nanostructure properties. Moreover, it provides cutting edge research from experts around the globe. The current status, trends, future directions and opportunities are discussed in detail, making the book also accessible for beginners to the subject and young researchers.
Diamond-like carbons (DLCs) display a number of attractive properties that make them versatile coating materials for a variety of applications, including extremely high hardness values, very low friction properties, very low gas permeability, good biocompatibility, and very high electrical resistivity, among others. Further research into this material is required to produce hydrogen-free DLC films and to synthesize it together with other materials, thereby obtaining better film properties. Diamond-Like Carbon Coatings: Technologies and Applications examines emerging manufacturing technologies for DLCs with the aim of improving their properties for use in practical applications. Discusses DLC coatings used in mechanical, manufacturing, and medical applications Details recent developments in the novel synthesis of DLC films Covers advances in understanding of chemical, structural, physical, mechanical, and tribological properties for modern material processing Highlights methods to yield longer service life Considers prospects for future applications of emerging DLC technologies This work is aimed at materials science and engineering researchers, advanced students, and industry professionals.
Polymer Coatings: Technologies and Applications provides a comprehensive account of the recent developments in polymer coatings encompassing novel methods, techniques, and a broad spectrum of applications. The chapters explore the key aspects of polymer coatings while highlighting fundamental research, different types of polymer coatings, and technology advances. This book also integrates the various aspects of these materials from synthesis to application. Current status, trends, future directions, and opportunities are also discussed. FEATURES Examines the basics to the most recent advances in all areas of polymer coatings Serves as a one-stop reference Discusses polymer-coated nanocrystals and coatings based on nanocomposites Describes morphology, spectroscopic analysis, adhesion, and rheology of polymer coatings Explores conducting, stimuli-responsive, self-healing, hydrophobic and hydrophilic, antifouling, and antibacterial polymer coatings Covers modeling and simulation With contributions from the top international researchers from industry, academia, government, and private research institutions, both new and experienced readers will benefit from this applications-oriented book. Sanjay Mavinkere Rangappa is a research scientist at the Natural Composites Research Group Lab, Academic Enhancement Department, King Mongkut's University of Technology North Bangkok, Thailand. Jyotishkumar Parameswaranpillai is a research professor at the Center of Innovation in Design and Engineering for Manufacturing, King Mongkut's University of Technology North Bangkok, Thailand. Suchart Siengchin is a professor at and president of King Mongkut's University of Technology North Bangkok, Thailand.
Polylactic Acid-Based Nanocellulose and Cellulose Composites offers a comprehensive account of the methods for the synthesis, characterization, processing, and applications of these advanced materials. This book fills a gap in the literature as the only currently available book on this topic. This book: Describes the procedures for the extraction of cellulose materials from different sources and characterization methods adopted for analyzing their properties Covers properties, processing, and applications of PLA biocomposites made using the extracted cellulose Discusses the effect of reinforcement of cellulose on the biopolymer matrix and the enhancement of biopolymer properties Examines current status, challenges, and future outlook in biocomposite research and applications The book serves as a reference for researchers, scientists, and advanced students in polymer science and engineering and materials science who are interested in cellulose polymer composites and their applications.
Fiber-reinforced polymer composites exhibit better damping characteristics than conventional metals due to the viscoelastic nature of the polymers. There has been a growing interest among research communities and industries in the use of natural fibers as reinforcements in structural and semi-structural applications, given their environmental advantages. Knowledge of the vibration and damping behavior of biocomposites is essential for engineers and scientists who work in the field of composite materials. Vibration and Damping Behavior of Biocomposites brings together the latest research developments in vibration and viscoelastic behavior of composites filled with different natural fibers. Features: Reviews the effect of various types of reinforcements on free vibration behavior Emphasizes aging effects, influence of compatibilizers, and hybrid fiber reinforcement Explores the influence of resin type on viscoelastic properties Covers the use of computational modeling to analyze dynamic behavior and viscoelastic properties Discusses viscoelastic damping characterization through dynamic mechanical analysis. This compilation will greatly benefit academics, researchers, advanced students, and practicing engineers in materials and mechanical engineering and related fields who work with biocomposites. Editors Dr. Senthil Muthu Kumar Thiagamani, Kalasalinagam Academy of Research and Education (KARE), India Dr. Md Enamul Hoque, Military Institute of Science and Technology (MIST), Bangladesh Dr. Senthilkumar Krishnasamy, King Mongkut's University of Technology North Bangkok KMUTNB, Thailand Dr. Chandrasekar Muthukumar, Hindustan Institute of Technology & Science (HITS), India Dr. Suchart Siengchin, King Mongkut's University of Technology North Bangkok KMUTNB, Thailand
A composite sandwich panel is a hybrid material made up of constituents such as a face sheet, a core, and adhesive film for bonding the face sheet and core together. Advances in materials have provided designers with several choices for developing sandwich structures with advanced functionalities. The selection of a material in the sandwich construction is based on the cost, availability, strength requirements, ease of manufacturing, machinability, and post-manufacturing process requirements. Sandwich Composites: Fabrication and Characterization provides insights into composite sandwich panels based on the material aspects, mechanical properties, defect characterization, and secondary processes after the fabrication, such as drilling and repair. FEATURES Outlines existing fabrication methods and various materials aspects Examines composite sandwich panels made of different face sheets and core materials Covers the response of composite sandwich panels to static and dynamic loads Describes parameters governing the drilling process and repair procedures Discusses the applications of composite sandwich panels in various fields Explores the role of 3D printing in the fabrication of composite sandwich panels Due to the wide scope of the topics covered, this book is suitable for researchers and scholars in the research and development of composite sandwich panels. This book can also be used as a reference by professionals and engineers interested in understanding the factors governing the material properties, material response, and the failure behavior under various mechanical loads.
Value-Added Biocomposites: Technology, Innovation, and Opportunity explores advances in research, processing, manufacturing, and novel applications of biocomposites. It describes the current market situation, commercial competition, and societal and economic impacts and advantages of substituting biocomposites for conventional composites, including natural fibers and bioplastics. FEATURES Discusses manufacturing and processing procedures that focus on improving physical, mechanical, thermal, electrical, chemical, and biological properties and achieving required specifications of downstream industries and customers Analyzes the wide range of available base materials and fillers of biocomposites and bioplastics in terms of the strength and weaknesses of materials and economic potential in the market Displays special and unique properties of biocomposites in different market sectors Showcases the insight of expert scientists and engineers with first-hand experience working with biocomposites across various industries Covers environmental factors, life cycle assessment, and waste recovery Combining technical, economic, and environmental topics, this work provides researchers, advanced students, and industry professionals a holistic overview of the value that biocomposites add across a variety of engineering applications and how to balance research and development with practical results.
Polymer Coatings: Technologies and Applications provides a comprehensive account of the recent developments in polymer coatings encompassing novel methods, techniques, and a broad spectrum of applications. The chapters explore the key aspects of polymer coatings while highlighting fundamental research, different types of polymer coatings, and technology advances. This book also integrates the various aspects of these materials from synthesis to application. Current status, trends, future directions, and opportunities are also discussed. FEATURES Examines the basics to the most recent advances in all areas of polymer coatings Serves as a one-stop reference Discusses polymer-coated nanocrystals and coatings based on nanocomposites Describes morphology, spectroscopic analysis, adhesion, and rheology of polymer coatings Explores conducting, stimuli-responsive, self-healing, hydrophobic and hydrophilic, antifouling, and antibacterial polymer coatings Covers modeling and simulation With contributions from the top international researchers from industry, academia, government, and private research institutions, both new and experienced readers will benefit from this applications-oriented book. Sanjay Mavinkere Rangappa is a research scientist at the Natural Composites Research Group Lab, Academic Enhancement Department, King Mongkut's University of Technology North Bangkok, Thailand. Jyotishkumar Parameswaranpillai is a research professor at the Center of Innovation in Design and Engineering for Manufacturing, King Mongkut's University of Technology North Bangkok, Thailand. Suchart Siengchin is a professor at and president of King Mongkut's University of Technology North Bangkok, Thailand.
This book provides a comprehensive account of developments in the area of lightweight polymer composites. It encompasses design and manufacturing methods for the lightweight polymer structures, various techniques, and a broad spectrum of applications. The book highlights fundamental research in lightweight polymer structures and integrates various aspects from synthesis to applications of these materials. Features Serves as a one stop reference with contributions from leading researchers from industry, academy, government, and private research institutions across the globe Explores all important aspects of lightweight polymer composite structures Offers an update of concepts, advancements, challenges, and application of lightweight structures Current status, trends, future directions, and opportunities are discussed, making it friendly for both new and experienced researchers. |
You may like...
|