Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
Get introduced to ML.NET, a new open source, cross-platform machine learning framework from Microsoft that is intended to democratize machine learning and enable as many developers as possible. Dive in to learn how ML.NET is designed to encapsulate complex algorithms, making it easy to consume them in many application settings without having to think about the internal details. You will learn about the features that do the necessary "plumbing" that is required in a variety of machine learning problems, freeing up your time to focus on your applications. You will understand that while the infrastructure pieces may at first appear to be disconnected and haphazard, they are not. Developers who are curious about trying machine learning, yet are shying away from it due to its perceived complexity, will benefit from this book. This introductory guide will help you make sense of it all and inspire you to try out scenarios and code samples that can be used in many real-world situations. What You Will Learn Create a machine learning model using only the C# language Build confidence in your understanding of machine learning algorithms Painlessly implement algorithms Begin using the ML.NET library software Recognize the many opportunities to utilize ML.NET to your advantage Apply and reuse code samples from the book Utilize the bonus algorithm selection quick references available online Who This Book Is For Developers who want to learn how to use and apply machine learning to enrich their applications
Learn how to build an interactive source code analytics system using Roslyn and JavaScript. This concise 150 page book will help you create and use practical code analysis tools utilizing the new features of Microsoft's Roslyn compiler to understand the health of your code and identify parts of the code for refactoring. Source code is one of the biggest assets of a software company. However if not maintained well, it can become a big liability. As source code becomes larger. more complex and accessed via the cloud, maintaining code quality becomes even more challenging. The author provides straightforward tools and advice on how to manage code quality in this new environment. Roslyn exposes a set of APIs which allow developers to parse their C# and VB.NET code and drastically lower the barrier to entry for Meta programming in .NET. Roslyn has a dedicated set of APIs for creating custom refactoring for integrating with Visual Studio. This title will show readers how to use Roslyn along with industry standard JavaScript visualization APIs like HighCharts, D3.js etc to create a scalable and highly responsive source code analytics system. What You Will Learn Understand the Roslyn Syntax API Use Data Visualization techniques to assist code analysis process visually Code health monitoring matrices (from the standard of Code Query Language) Code mining techniques to identify design patterns used in source code Code forensics techniques to identify probable author of a given source code Techniques to identify duplicate/near duplicate code Who This Book is For .NET Software Developers and Architects
LINQ represents a paradigm shift for developers used to an imperative/object oriented programming style, because LINQ draws on functional programming principles. Thinking in LINQ addresses the differences between these two by providing a set of succinct recipes arranged in several groups, including: Basic and extended LINQ operators Text processing Loop refactoring Monitoring code health Reactive Extensions (Rx.NET) Building domain-specific languages Using the familiar "recipes" approach, Thinking in LINQ shows you how to approach building LINQ-based solutions, how such solutions are different from what you already know, and why they're better. The recipes cover a wide range of real-world problems, from using LINQ to replace existing loops, to writing your own Swype-like keyboard entry routines, to finding duplicate files on your hard drive. The goal of these recipes is to get you "thinking in LINQ," so you can use the techniques in your own code to write more efficient and concise data-intensive applications.
Tap into bi-directional integration and analytics with SAP Manufacturing Integration and Intelligence. With this bestselling guide, get step-by-step instructions for configuring SAP MII, managing external data connections, developing composite applications, and more. Dive into business logic service transactions and use visualization services such as i5 display templates and web reports. Run SAP Overall Equipment Effectiveness Management by mastering activities, dashboards, downtime maintenance, audit log checks, and shop-floor user interfaces. Your nitty-gritty guide to SAP MII is here! Highlights include: 1) Data connections and management 2) Message servers 3) Composite applications 4) Manufacturing data objects 5) Business logic service transactions 6) Visualization services 7) Plant information catalog (PIC) 8) SAP Plant Connectivity 9) SAP Overall Equipment Effectiveness Management
Get up and running with machine learning with F# in a fun and functional way About This Book * Design algorithms in F# to tackle complex computing problems * Be a proficient F# data scientist using this simple-to-follow guide * Solve real-world, data-related problems with robust statistical models, built for a range of datasets Who This Book Is For If you are a C# or an F# developer who now wants to explore the area of machine learning, then this book is for you. Familiarity with theoretical concepts and notation of mathematics and statistics would be an added advantage. What You Will Learn * Use F# to find patterns through raw data * Build a set of classification systems using Accord.NET, Weka, and F# * Run machine learning jobs on the Cloud with MBrace * Perform mathematical operations on matrices and vectors using Math.NET * Use a recommender system for your own problem domain * Identify tourist spots across the globe using inputs from the user with decision tree algorithms In Detail The F# functional programming language enables developers to write simple code to solve complex problems. With F#, developers create consistent and predictable programs that are easier to test and reuse, simpler to parallelize, and are less prone to bugs. If you want to learn how to use F# to build machine learning systems, then this is the book you want. Starting with an introduction to the several categories on machine learning, you will quickly learn to implement time-tested, supervised learning algorithms. You will gradually move on to solving problems on predicting housing pricing using Regression Analysis. You will then learn to use Accord.NET to implement SVM techniques and clustering. You will also learn to build a recommender system for your e-commerce site from scratch. Finally, you will dive into advanced topics such as implementing neural network algorithms while performing sentiment analysis on your data. Style and approach This book is a fast-paced tutorial guide that uses hands-on examples to explain real-world applications of machine learning. Using practical examples, the book will explore several machine learning techniques and also describe how you can use F# to build machine learning systems.
This is a concise, practical guide that will help you learn Generics in .NET, with lots of real world and fun-to-build examples and clear explanations. It is packed with screenshots to aid your understanding of the process. This book is aimed at beginners in Generics. It assumes some working knowledge of C# , but it isn't mandatory. The following would get the most use out of the book: Newbie C# developers struggling with Generics. Experienced C++ and Java Programmers who are migrating to C# and looking for an alternative to other generic frameworks like STL and JCF would find this book handy. Managers who want to know what Generics is and how to put it to good use. Architects will find the benchmarking extremely useful, because it's the first of its kind across a framework of several collections.
|
You may like...
Twice The Glory - The Making Of The…
Lloyd Burnard, Khanyiso Tshwaku
Paperback
|