Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
A reference and text, Dissipative Phenomena treats the broadly applicable area of nonequilibrium statistical physics and concentrates the modelling and characterization of dissipative phenomena. A variety of examples from diverse disciplines, such as condensed matter physics, materials science, metallurgy, chemical physics, are discussed. Dattagupta employs a broad framework of stochastic processes and master equation techniques to obtain models for a range of experimentally relevant phenomena such as classical and quantum Brownian motion, spin dynamics, kinetics of phase ordering, relaxation in glasses, and dissipative tunnelling. This book will serve as a graduate/research level textbook since it offers considerable utility to experimentalists, computational physicists and theorists.
A reference and text, Dissipative Phenomena treats the broadly applicable area of nonequilibrium statistical physics and concentrates the modelling and characterization of dissipative phenomena. A variety of examples from diverse disciplines, such as condensed matter physics, materials science, metallurgy, chemical physics, are discussed. Dattagupta employs a broad framework of stochastic processes and master equation techniques to obtain models for a range of experimentally relevant phenomena such as classical and quantum Brownian motion, spin dynamics, kinetics of phase ordering, relaxation in glasses, and dissipative tunnelling. This book will serve as a graduate/research level textbook since it offers considerable utility to experimentalists, computational physicists and theorists.
Within a unifying framework, Diffusion: Formalism and Applications covers both classical and quantum domains, along with numerous applications. The author explores the more than two centuries-old history of diffusion, expertly weaving together a variety of topics from physics, mathematics, chemistry, and biology. The book examines the two distinct paradigms of diffusion-physical and stochastic-introduced by Fourier and Laplace and later unified by Einstein in his groundbreaking work on Brownian motion. The author describes the role of diffusion in probability theory and stochastic calculus and discusses topics in materials science and metallurgy, such as defect-diffusion, radiation damage, and spinodal decomposition. In addition, he addresses the impact of translational/rotational diffusion on experimental data and covers reaction-diffusion equations in biology. Focusing on diffusion in the quantum domain, the book also investigates dissipative tunneling, Landau diamagnetism, coherence-to-decoherence transition, quantum information processes, and electron localization.
Within a unifying framework, Diffusion: Formalism and Applications covers both classical and quantum domains, along with numerous applications. The author explores the more than two centuries-old history of diffusion, expertly weaving together a variety of topics from physics, mathematics, chemistry, and biology. The book examines the two distinct paradigms of diffusion physical and stochastic introduced by Fourier and Laplace and later unified by Einstein in his groundbreaking work on Brownian motion. The author describes the role of diffusion in probability theory and stochastic calculus and discusses topics in materials science and metallurgy, such as defect-diffusion, radiation damage, and spinodal decomposition. In addition, he addresses the impact of translational/rotational diffusion on experimental data and covers reaction-diffusion equations in biology. Focusing on diffusion in the quantum domain, the book also investigates dissipative tunneling, Landau diamagnetism, coherence-to-decoherence transition, quantum information processes, and electron localization."
|
You may like...
|