Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This introduction to the representation theory of compact Lie groups follows Herman Weyl 's original approach. It discusses all aspects of finite-dimensional Lie theory, consistently emphasizing the groups themselves. Thus, the presentation is more geometric and analytic than algebraic. It is a useful reference and a source of explicit computations. Each section contains a range of exercises, and 24 figures help illustrate geometric concepts.
This introduction to the representation theory of compact Lie groups follows Herman Weyl 's original approach. It discusses all aspects of finite-dimensional Lie theory, consistently emphasizing the groups themselves. Thus, the presentation is more geometric and analytic than algebraic. It is a useful reference and a source of explicit computations. Each section contains a range of exercises, and 24 figures help illustrate geometric concepts.
These notes were prepared for the DMV-Seminar held in Dusseldorf, Schloss Mickeln from June 28 to July 5, 1987. They consist of two parts which can be read independently. The reader is presumed to have a basic education in differential and algebraic topology. Surgery theory is the basic tool for the investigation of differential and topological manifolds. A systematic development of the theory is a long and difficult task. The purpose of these notes is to describe simple examples and at the same time to give an introduction to some of the systematic parts of the theory. The first part is concerned with examples. They are related to representations of finite groups and group actions on spheres, and are considered as a generalisation of the spherical space form problem. The second part reviews the general setting of surgery theory and reports on the computation of the surgery abstraction groups. Both parts present material not covered in any textbook and also give an introduction to the literature and areas of research. 1. REPRESENTATION FORMS AND HOMOTOPY REPRESENTATIONS. Tammo tom Dieck Mathematical Institute Gottingen University Fed. Rep. of Germany Let G be a (finite) group. We consider group actions of G on spheres and spherelike spaces.
"Aus den Besprechungen: ""Although this volume appears as a set of "Lecture Notes," in fact it is a rather polished and complete text on homotopy theory, from the viewpoint of offering a very careful examination of the foundations. The authors introduce the notion of homotopy in general, and then launch into an elaborate study of cofibrations. The second major chapter concerns fibrations. The last chapter centers around homotopy sets and groups, induced homomorphisms and exact sequences, excision in the stable range and suspension. It is a well polished piece of exposition, suitable for a reader who knows point-set topology and basic category theory." "Mathematical Reviews"
|
You may like...
|