![]() |
![]() |
Your cart is empty |
||
Showing 1 - 9 of 9 matches in All Departments
Recent advances in scientific computing have caused the field of aerodynamics to change at a rapid pace, simplifying the design cycle of aerospace vehicles enormously - this book takes the readers from core concepts of aerodynamics to recent research, using studies and real-life scenarios to explain problems and their solutions. This book presents in detail the important concepts in computational aerodynamics and aeroacoustics taking readers from the fundamentals of fluid flow and aerodynamics to a more in-depth analysis of acoustic waves, aeroacoustics, computational modelling and processing. This book will be of use to students in multiple branches of engineering, physics and applied mathematics. Additionally, the book can also be used as a text in professional development courses for industry engineers and as a self-help reference for active researchers in both academia and the industry.
This book highlights by careful documentation of developments what led to tracking the growth of deterministic disturbances inside the shear layer from receptivity to fully developed turbulent flow stages. Associated theoretical and numerical developments are addressed from basic level so that an uninitiated reader can also follow the materials which lead to the solution of a long-standing problem. Solving Navier-Stokes equation by direct numerical simulation (DNS) from the first principle has been considered as one of the most challenging problems of understanding what causes transition to turbulence. Therefore, this book is a very useful addition to advanced CFD and advanced fluid mechanics courses.
The role of high performance computing in current research on transitional and turbulent flows is undoubtedly very important. This review volume provides a good platform for leading experts and researchers in various fields of fluid mechanics dealing with transitional and turbulent flows to synergistically exchange ideas and present the state of the art in the fields.Contributed by eminent researchers, the book chapters feature keynote lectures, panel discussions and the best invited contributed papers.
This book provides state-of-art information on high-accuracy scientific computing and its future prospects, as applicable to the broad areas of fluid mechanics and combustion, and across all speed regimes. Beginning with the concepts of space-time discretization and dispersion relation in numerical computing, the foundations are laid for the efficient solution of the Navier-Stokes equations, with special reference to prominent approaches such as LES, DES and DNS. The basis of high-accuracy computing is rooted in the concept of stability, dispersion and phase errors, which require the comprehensive analysis of discrete computing by rigorously applying error dynamics. In this context, high-order finite-difference and finite-volume methods are presented. Naturally, the coverage also includes fundamental notions of high-performance computing and advanced concepts on parallel computing, including their implementation in prospective hexascale computers. Moreover, the book seeks to raise the bar beyond the pedagogical use of high-accuracy computing by addressing more complex physical scenarios, including turbulent combustion. Tools like proper orthogonal decomposition (POD), proper generalized decomposition (PGD), singular value decomposition (SVD), recursive POD, and high-order SVD in multi-parameter spaces are presented. Special attention is paid to bivariate and multivariate datasets in connection with various canonical flow and heat transfer cases. The book mainly addresses the needs of researchers and doctoral students in mechanical engineering, aerospace engineering, and all applied disciplines including applied mathematics, offering these readers a unique resource.
Addressing classical material as well as new perspectives, Instabilities of Flows and Transition to Turbulence presents a concise, up-to-date treatment of theory and applications of viscous flow instability. It covers materials from classical instability to contemporary research areas including bluff body flow instability, mixed convection flows, and application areas of aerospace and other branches of engineering. Transforms and perturbation techniques are used to link linear instability with receptivity of flows, as developed by the author. The book: Provides complete coverage of transition concepts, including receptivity and flow instability Introduces linear receptivity using bi-lateral Fourier-Laplace transform techniques Presents natural laminar flow (NLF) airfoil analysis and design as a practical application of classical and bypass transition Distinguishes strictly between instability and receptivity, which leads to identification of wall- and free stream-modes Describes energy-based receptivity theory for the description of bypass transitions Instabilities of Flows and Transition to Turbulence has evolved into an account of the personal research interests of the author over the years. A conscious effort has been made to keep the treatment at an elementary level requiring rudimentary knowledge of calculus, the Fourier-Laplace transform, and complex analysis. The book is equally amenable to undergraduate students, as well as researchers in the field.
This book provides state-of-art information on high-accuracy scientific computing and its future prospects, as applicable to the broad areas of fluid mechanics and combustion, and across all speed regimes. Beginning with the concepts of space-time discretization and dispersion relation in numerical computing, the foundations are laid for the efficient solution of the Navier-Stokes equations, with special reference to prominent approaches such as LES, DES and DNS. The basis of high-accuracy computing is rooted in the concept of stability, dispersion and phase errors, which require the comprehensive analysis of discrete computing by rigorously applying error dynamics. In this context, high-order finite-difference and finite-volume methods are presented. Naturally, the coverage also includes fundamental notions of high-performance computing and advanced concepts on parallel computing, including their implementation in prospective hexascale computers. Moreover, the book seeks to raise the bar beyond the pedagogical use of high-accuracy computing by addressing more complex physical scenarios, including turbulent combustion. Tools like proper orthogonal decomposition (POD), proper generalized decomposition (PGD), singular value decomposition (SVD), recursive POD, and high-order SVD in multi-parameter spaces are presented. Special attention is paid to bivariate and multivariate datasets in connection with various canonical flow and heat transfer cases. The book mainly addresses the needs of researchers and doctoral students in mechanical engineering, aerospace engineering, and all applied disciplines including applied mathematics, offering these readers a unique resource.
Recent advances in scientific computing have caused the field of aerodynamics to change at a rapid pace, simplifying the design cycle of aerospace vehicles enormously - this book takes the readers from core concepts of aerodynamics to recent research, using studies and real-life scenarios to explain problems and their solutions. This book presents in detail the important concepts in computational aerodynamics and aeroacoustics taking readers from the fundamentals of fluid flow and aerodynamics to a more in-depth analysis of acoustic waves, aeroacoustics, computational modelling and processing. This book will be of use to students in multiple branches of engineering, physics and applied mathematics. Additionally, the book can also be used as a text in professional development courses for industry engineers and as a self-help reference for active researchers in both academia and the industry.
This book highlights by careful documentation of developments what led to tracking the growth of deterministic disturbances inside the shear layer from receptivity to fully developed turbulent flow stages. Associated theoretical and numerical developments are addressed from basic level so that an uninitiated reader can also follow the materials which lead to the solution of a long-standing problem. Solving Navier-Stokes equation by direct numerical simulation (DNS) from the first principle has been considered as one of the most challenging problems of understanding what causes transition to turbulence. Therefore, this book is a very useful addition to advanced CFD and advanced fluid mechanics courses.
|
![]() ![]() You may like...
The Family Lawyer - 3-in-One Collection
James Patterson
Paperback
![]()
|