0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling (Hardcover, 1st ed. 2022): Kyle Robert... Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling (Hardcover, 1st ed. 2022)
Kyle Robert Harrison, Saber Elsayed, Ivan Leonidovich Garanovich, Terence Weir, Sharon G. Boswell, …
R3,987 Discovery Miles 39 870 Ships in 10 - 15 working days

This book consists of eight chapters, authored by distinguished researchers and practitioners, that highlight the state of the art and recent trends in addressing the project portfolio selection and scheduling problem (PPSSP) across a variety of domains, particularly defense, social programs, supply chains, and finance. Many organizations face the challenge of selecting and scheduling a subset of available projects subject to various resource and operational constraints. In the simplest scenario, the primary objective for an organization is to maximize the value added through funding and implementing a portfolio of projects, subject to the available budget. However, there are other major difficulties that are often associated with this problem such as qualitative project benefits, multiple conflicting objectives, complex project interdependencies, workforce and manufacturing constraints, and deep uncertainty regarding project costs, benefits, and completion times. It is well known that the PPSSP is an NP-hard problem and, thus, there is no known polynomial-time algorithm for this problem. Despite the complexity associated with solving the PPSSP, many traditional approaches to this problem make use of exact solvers. While exact solvers provide definitive optimal solutions, they quickly become prohibitively expensive in terms of computation time when the problem size is increased. In contrast, evolutionary and memetic computing afford the capability for autonomous heuristic approaches and expert knowledge to be combined and thereby provide an efficient means for high-quality approximation solutions to be attained. As such, these approaches can provide near real-time decision support information for portfolio design that can be used to augment and improve existing human-centric strategic decision-making processes. This edited book provides the reader with a broad overview of the PPSSP, its associated challenges, and approaches to addressing the problem using evolutionary and memetic computing.

Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling (Paperback, 1st ed. 2022): Kyle Robert... Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling (Paperback, 1st ed. 2022)
Kyle Robert Harrison, Saber Elsayed, Ivan Leonidovich Garanovich, Terence Weir, Sharon G. Boswell, …
R3,992 Discovery Miles 39 920 Ships in 18 - 22 working days

This book consists of eight chapters, authored by distinguished researchers and practitioners, that highlight the state of the art and recent trends in addressing the project portfolio selection and scheduling problem (PPSSP) across a variety of domains, particularly defense, social programs, supply chains, and finance. Many organizations face the challenge of selecting and scheduling a subset of available projects subject to various resource and operational constraints. In the simplest scenario, the primary objective for an organization is to maximize the value added through funding and implementing a portfolio of projects, subject to the available budget. However, there are other major difficulties that are often associated with this problem such as qualitative project benefits, multiple conflicting objectives, complex project interdependencies, workforce and manufacturing constraints, and deep uncertainty regarding project costs, benefits, and completion times. It is well known that the PPSSP is an NP-hard problem and, thus, there is no known polynomial-time algorithm for this problem. Despite the complexity associated with solving the PPSSP, many traditional approaches to this problem make use of exact solvers. While exact solvers provide definitive optimal solutions, they quickly become prohibitively expensive in terms of computation time when the problem size is increased. In contrast, evolutionary and memetic computing afford the capability for autonomous heuristic approaches and expert knowledge to be combined and thereby provide an efficient means for high-quality approximation solutions to be attained. As such, these approaches can provide near real-time decision support information for portfolio design that can be used to augment and improve existing human-centric strategic decision-making processes. This edited book provides the reader with a broad overview of the PPSSP, its associated challenges, and approaches to addressing the problem using evolutionary and memetic computing.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Beyond Yellow English - Toward a…
Angela Reyes, Adrienne Lo Hardcover R1,765 Discovery Miles 17 650
Colorectal Cancer Screening
Joseph Anderson, MD, Charles Kahi, MD Hardcover R4,017 Discovery Miles 40 170
WTF - Capturing Zuma: A Cartoonist's…
Zapiro Paperback R295 R272 Discovery Miles 2 720
Research Anthology on Telemedicine…
Information Resources Management Association Hardcover R13,452 Discovery Miles 134 520
The Papers of James Madison - Purchased…
James Madison Paperback R782 Discovery Miles 7 820
Sabotage - Eskom Under Siege
Kyle Cowan Paperback  (2)
R340 R314 Discovery Miles 3 140
Light Through The Bars - Understanding…
Babychan Arackathara Paperback R30 R28 Discovery Miles 280
Cooking Lekka - Comforting Recipes For…
Thameenah Daniels Paperback R312 Discovery Miles 3 120
Black Tax - Burden Or Ubuntu?
Niq Mhlongo Paperback  (2)
R340 R304 Discovery Miles 3 040
Inverse Theory and Applications in…
Michael S. Zhdanov Hardcover R5,742 R5,316 Discovery Miles 53 160

 

Partners