Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
This book presents advanced research in a relatively new field of scholarly inquiry that is usually referred to as dynamic network user equilibrium, now almost universally abbreviated as DUE. It provides the first synthesis of results obtained over the last decade from applying the differential variational inequality (DVI) formalism to study the DUE problem. In particular, it explores the intimately related problem of dynamic network loading, which determines the arc flows and effective travel delays (or generalized travel costs) arising from the expression of departure rates at the origins of commuter trips between the workplace and home. In particular, the authors show that dynamic network loading with spillback of queues into upstream arcs may be formulated as a differential algebraic equation system. They demonstrate how the dynamic network loading problem and the dynamic traffic user equilibrium problem may be solved simultaneously rather than sequentially, as well as how the first-in-first-out queue discipline may be maintained for each when Lighthill-Whitham-Richardson traffic flow theory is used. A number of recent and new extensions of the DVI-based theory of DUE and corresponding examples are presented and discussed. Relevant mathematical background material is provided to make the book as accessible as possible.
Network Science, Nonlinear Science and Infrastructure Systems has been written by leading scholars in these areas. Its express purpose is to develop common theoretical underpinnings to better solve modern infrastructural problems. It is felt by many who work in these fields that many modern communication problems, ranging from transportation networks to telecommunications, Internet, supply chains, etc., are fundamentally infrastructure problems. Moreover, these infrastructure problems would benefit greatly from a confluence of theoretical and methodological work done with the areas of Network Science, Dynamical Systems and Nonlinear Science. This book is dedicated to the formulation of infrastructural tools that will better solve these types of infrastructural problems.
This is a book about the simultaneous location, production and distri bution decisions of a firm entering a competitive market whose spatial nature is describable by a network in which the market either achieves an equilibrium or is equilibrium tending. As such, the problem is of clear theoretical and practical importance, for it is a rather general version of the problem faced by real firms every day in deciding where to locate. Further, the timeliness of this subject manifests itself in the growing excitement and interest found both in the research/academic communities and in the practitioner/private industry communities for more comprehensive approaches to competitive facility location analy sis and equilibrium modeling of networks. The desire both for new conceptual approaches yielding enhanced insights and for practical methodologies to capture these insights drives this interest. While nor mative, deterministic facility location modeling techniques currently provide valuable input into the location decision-making process, re searchers and practitioners alike have realized the vast and relatively untapped potential of more advanced location decision making tech niques. In this book, we develop what we believe represents a major new line of research in the field of competitive facility location analysis; namely, equilibrium facility location modeling. In particular, this book offers a number of innovations in the mathe matical analysis and computation of solutions to location models which we have pioneered and which are collected under a single cover for the first time."
DYNAMIC OPTIMIZATION AND DIFFERENTIAL GAMES has been written to address the increasing number of Operations Research and Management Science problems (that is, applications) that involve the explicit consideration of time and of gaming among multiple agents. It is a book that will be used both as a textbook and as a reference and guide to engineers, operation researchers, applied mathematicians and social scientists whose work involves the theoretical aspects of dynamic optimization and differential games. Included throughout the text are detailed explanations of several original dynamic and game-theoretic mathematical models, which are of particular relevance in todaya (TM)s technologically-driven-global economy: revenue management, supply chain management, electric power systems, urban freight systems, dynamic congestion pricing, dynamic traffic assignment, electronic commerce and the Internet. In addition, there will be some more traditional applications with useful pedagogical content included in Chapter 1. The book combines an emphasis on deterministic models and methods along with an introduction to stochastic optimal control and stochastic differential games. And most important, the book covers both theory and applications. It develops the key results of deterministic, continuous time, optimal control theory from both the classical calculus of variations perspectives and the more modern approach of infinite dimensional mathematical programming. Infinite dimensional mathematical programming provides greater utility for solving continuous-time-differential-game problems.
This book has been written to address the increasing number of Operations Research and Management Science problems (that is, applications) that involve the explicit consideration of time and of gaming among multiple agents. It is a book that will be used both as a textbook and as a reference and guide by those whose work involves the theoretical aspects of dynamic optimization and differential games.
This is a book about the simultaneous location, production and distri bution decisions of a firm entering a competitive market whose spatial nature is describable by a network in which the market either achieves an equilibrium or is equilibrium tending. As such, the problem is of clear theoretical and practical importance, for it is a rather general version of the problem faced by real firms every day in deciding where to locate. Further, the timeliness of this subject manifests itself in the growing excitement and interest found both in the research/academic communities and in the practitioner/private industry communities for more comprehensive approaches to competitive facility location analy sis and equilibrium modeling of networks. The desire both for new conceptual approaches yielding enhanced insights and for practical methodologies to capture these insights drives this interest. While nor mative, deterministic facility location modeling techniques currently provide valuable input into the location decision-making process, re searchers and practitioners alike have realized the vast and relatively untapped potential of more advanced location decision making tech niques. In this book, we develop what we believe represents a major new line of research in the field of competitive facility location analysis; namely, equilibrium facility location modeling. In particular, this book offers a number of innovations in the mathe matical analysis and computation of solutions to location models which we have pioneered and which are collected under a single cover for the first time."
This book is written by leading scholars in Network Science, Nonlinear Science and Infrastructure Systems, expressly to develop common theoretical underpinnings for better solutions to modern infrastructural problems. The book is dedicated to the formulation of infrastructural tools that will better solve problems from transportation networks to telecommunications, Internet, supply chains and more.
|
You may like...
|