Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
These notes give a fairly elementary introduction to the local theory of differentiable mappings. Sard's Theorem and the Preparation Theorem of Malgrange and Mather are the basic tools and these are proved first. There follows a number of illustrations including: the local part of Whitney's Theorem on mappings of the plane into the plane, quadratic differentials, the Instability Theorem of Thom, one of Mather's theorems on finite determinacy and a glimpse of the theory of Toujeron. The later part of the book develops Mather's theory of unfoldings of singularities. Its application to Catastrophe theory is explained and the Elementary Catastrophes are illustrated by many pictures. The book is suitable as a text for courses to graduates and advanced undergraduates but may also be of interest to mathematical biologists and economists.
Die mathematischen Formeln . . . Sie spielen nur mit sich selbst, driicken nichts als ihre wunderbare Natur aus, und eben darum sind sie so ausdrucksvoll - eben daruf!1, spiegelt sich in ihnen das seltsame Verhli. ltnisspielder Dinge. Die Grundbegriffe der Linearen Algebra, wie man sie zur Vorbereitung einer Vor- lesung tiber Algebra braucht, lassen sich auf einem Dutzend Seiten vollstandig darstellen. SoIche Kiirze wird vielleicht gerade Algebraikern yom Fach besonders einleuchten. Aber auf der anderen Seite stehen Bedtirfnisse und Interessen aus der Analysis, Geometrie und Physik, die weit tiber das hinausgehen, was man in einem zweisemestrigen Kurs bewaltigen kann. Die Theorie der Liealgebren, das Studium der orthogonalen Gruppen, die Grundlagen der speziellen Relativitats- theorie, die Ubertragung der Analysis auf Mannigfaltigkeiten und die Grundlagen der Projektiven Geometrie, - all das ist eigentlich nur Lineare Algebra. Nun ist das Buch, das ich hier vorlege, auch nicht enzyklopadisch, aber ich mochte doch Wege zeigen, die aus dem einfachen Rechenschematismus, mit dem die Lineare Algebra beginnt, in reiche, vielfiiltige, sinnvolle und anschauliche Ge- biete fiihren. Meine Darste11ung beginnt mit sehr geringer Abstraktion. Das nullte Kapitel verlangt nur, was man auf der Schule machen kann, aber es stellt schon die Studenten der Physik (und die Kollegen) flir einige Zeit zufrieden. Auch da- nach geht es mit der Abstraktion behutsam voran, und ich scheue mich nicht, vieles mehrfach zu behandeln, rechnerisch, algebraisch und geometrisch. Ich glaube nicht, dass man auf diese Weise Zeit verliert.
Das Ziel dieses Buches ist, die eigentlich elementargeometrischen Methoden der Differentialtopologie darzustellen. Es richtet sich an Studenten mit Grundkenntnissen in Analysis und allgemeiner Topologie. Wir beweisen Einbettungs-, Isotopie-und Transversalitatssatze und behandeln als wichtige Techniken den Satz von Sard, Partitionen der Eins, dynamische Systeme und (nach Serge Langs Vorbild) Sprays, die zusammenhangende Summe, Tubenumgebungen, Kra- gen und das Zusammenkleben von berandeten Mannigfaltigkeiten langs des Randes. Wir haben, wie wohl heute jeder jungere Topologe, aus Milnors Schriften [4, 5, 6J selbst viel gelernt, wovon sich mancherlei Spuren im Text finden, und auch Serge Langs vorzugliche Darstellung [3J haben wir gelegentlich benutzt - was angstlich zu vermeiden einem Buch uber Differentialtopologie ja auch nicht gut tun koennte. Die jedem Kapitel reichlich beigefugten UEbungsaufgaben sind fur einen Anfanger nicht immer leicht; im Text werden sie nicht be- nutzt. Nicht behandelt sind in diesem Buch die Analysis auf Mannig- faltigkeiten (Satz von Stokes), die Morse-Theorie, die algebraische Topologie der Mannigfaltigkeiten und die Bordismentheorie. Wir hoffen aber, dass sich unser Buch als eine solide Grundlage fur die nahere Bekanntschaft mit diesen weiterfuhrenden Gebieten der Differentialtopologie erweisen wird. In diesem korrigierten Nachdruck sind zahlreiche kleine Versehen, die uns bekanntgeworden sind, berichtigt und einige Aufgaben hin- zugekommen. Fur Hinweise danken wir Kollegen und vielen interes- sierten Lesern. Theodor Broeckt'r Regensburg, im August 1990 Klaus Janich Inhaltsverzeichnis 1. Mannigfaltigkeiten und differenzierbare Strukturen. Ii 13 2. Der Tangentialraum 3. Vektorraumbundel . 22 * 4. Lineare Algebra fur Vektorraumbundel 34 Lokale und tangentiale Eigenschaften. 45 5.
These notes were taken from lectures given by tom Dieck in the win- ter-term 1969/70 at the Mathematical Institute in Heidelberg. The aim of the lectures was to introduce the students to cobordism theory and to propagate ideas of Boardman and Quillen about the calculation of cobordism theories with the aid of formal groups. These notes give an enlarged version of the leetures with many details and proofs filled in. A chapter on unitary cobordism has been left out and will appear separately. The eontents of the notes are as follows: In chapter I we recall those parts of differential topology and of the theory of veetor bundles which we will use. This only to re- wind the reader of well known faets or to give hints at neeessary pre- requisites to students willing to learn differential topology. Apart from these faets we assume knowledge of elementary homotopy theory and classical cohomology with coefficients in l2, characterized by the Eilenberg-Steenrod axioms. In chapter II the (non oriented) bordism homology theory N.(-) is defined by singular manifolds. We verify the axioms of a homology theory. Our approach differs from that of Conner and Floyd [4] in that we only define absolute homology groups and use a system of axioms in which an exact sequence of Mayer-Vietoris type plays the main role.
|
You may like...
How Did We Get Here? - A Girl's Guide to…
Mpoomy Ledwaba
Paperback
(1)
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
(5)
|