Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 14 of 14 matches in All Departments
This volume focuses on isotopic signatures of volatile elements as
tracers for evolutionary processes during the formation of the Sun
and the planets from an interstellar molecular cloud and, in turn,
illuminates how the isotopic compositions of the present-day solar
system objects have been established.
Representatives of several scientific communities, such as planetary scientists, astronomers, space physicists, chemists and astrobiologists have met with the aim to review the knowledge on four major themes: (1) the study of the formation and evolution processes of the outer planets and their satellites, beginning with the formation of compounds and planetesimals in the solar nebula, and the subsequent evolution of the interiors of the outer planets, (2) a comparative study of the atmospheres of the outer planets and Titan, (3) the study of the planetary magnetospheres and their interactions with the solar wind, and (4) the formation and properties of satellites and rings, including their interiors, surfaces, and their interaction with the solar wind and the magnetospheres of the outer planets. Beyond these topics, the implications for the prebiotic chemical evolution on Europa and Titan are reviewed. At the time of publication, the study of the outer planets is particularly motivated by the fact that the Saturn system is being investigated by the Cassini-Huygens mission.
This text treats our knowledge of the solar system from an astrophysical point of view. Part 1 deals with the formation of the solar system and its interaction with the interplanetary medium. Part 2 presents its various objects: planets and satellites, asteroids, comets, trans-neptunian objects and interplanetary dust. The final sections on extrasolar planetary systems and on the search for life in the Universe round off an introduction to a field that has grown dramatically following the space missions of the last twenty years. Over the last decade many exciting observations have helped to reshape our understanding of the solar system and planetary science. In the third corrected and revised edition of this classic on the astrophysics of our solar system, students and lecturers in astronomy and planetary science as well as planet observers will find a mine of up-to-date information.
What is a planet? The answer may seem obvious; still, the definition of a planet has continuously evolved over the centuries, and their number has changed following successive discoveries. In 2006, the decision endorsed by the International Astronomical Union to remove Pluto from the list of planets has well illustrated the difficulty associated with their definition. The recent discovery of hundreds of exoplanets around nearby stars of our Galaxy opens a new and spectacular dimension to astrophysics. We presently know very little about the physical nature of exoplanets. In contrast, our knowledge on solar system planets has made huge progress over the past decades, thanks, especially, to space planetary exploration. The purpose of this book is first to characterize what planets are, in their global properties and in their diversity. Then, this knowledge is used to try to imagine the physical nature of exoplanets, starting from the few parameters we know about them. Throughout, we keep in mind the ultimate question of the search for possible extraterrestrial life: Could life exist or have existed in the solar system and beyond?Therese Encrenaz is Emeritus Senior Scientist at the Centre National de la Recherche Scientifique. She works at the Observatoire de Paris, at the Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique (LESIA). She is a specialist of the study of planetary atmospheres, and has been involved in several space missions.
Over the past ten years, the discovery of extrasolar planets has opened a new field of astronomy, and this area of research is rapidly growing, from both the observational and theoretical point of view. The presence of many giant exoplanets in the close vicinity of their star shows that these newly discovered planetary systems are very different from the solar system. New theoretical models are being developed in order to understand their formation scenarios, and new observational methods are being implemented to increase the sensitivity of exoplanet detections. In the present book, the authors address the question of planetary systems from all aspects. Starting from the facts (the detection of more than 300 extraterrestrial planets), they first describe the various methods used for these discoveries and propose a synthetic analysis of their global properties. They then consider the observations of young stars and circumstellar disks and address the case of the solar system as a specific example, different from the newly discovered systems. Then the study of planetary systems and of exoplanets is presented from a more theoretical point of view. The book ends with an outlook to future astronomical projects, and a description of the search for life on exoplanets. This book addresses students and researchers who wish to better understand this newly expanding field of research.
This volume focuses on isotopic signatures of volatile elements as
tracers for evolutionary processes during the formation of the Sun
and the planets from an interstellar molecular cloud and, in turn,
illuminates how the isotopic compositions of the present-day solar
system objects have been established.
Over the past ten years, the discovery of extrasolar planets has opened a new field of astronomy, and this area of research is rapidly growing, from both the observational and theoretical point of view. The presence of many giant exoplanets in the close vicinity of their star shows that these newly discovered planetary systems are very different from the solar system. New theoretical models are being developed in order to understand their formation scenarios, and new observational methods are being implemented to increase the sensitivity of exoplanet detections. In the present book, the authors address the question of planetary systems from all aspects. Starting from the facts (the detection of more than 300 extraterrestrial planets), they first describe the various methods used for these discoveries and propose a synthetic analysis of their global properties. They then consider the observations of young stars and circumstellar disks and address the case of the solar system as a specific example, different from the newly discovered systems. Then the study of planetary systems and of exoplanets is presented from a more theoretical point of view. The book ends with an outlook to future astronomical projects, and a description of the search for life on exoplanets. This book addresses students and researchers who wish to better understand this newly expanding field of research.
In this third corrected and revised edition students and lecturers in astronomy and planetary science as well as planet observers will find a mine of up-to-date information on the solar system and its interaction with the interplanetary medium, its various objects, comparative planetology, discussion of questions for further research and future space exploration.
In Searching for Water in the Solar System, Therese Encrenaz takes the reader on a journey through the Universe in search of water. She begins by introducing the most well-known of molecule H2O, its physical and chemical characteristics and its cosmic Formation and abundance. She examines the methods by which the presence of water is detected, both within the solar system and beyond. One by one she visits a diversity of locations in the cosmos, from the nearest planets to the furthest galaxies, where water has been discovered. In the formation of the solar system, she explains how the water molecule played a major part, with the so-called 'ice frontier' determining the natures of the terrestrial and giant planets. The book explores the presence of water in the various bodies of the Solar System: in the giant planets, with their rings and systems of satellites, in comets, asteroids and in the terrestrial planets. By tracing the history of water in the atmospheres of Mars, Venus and the Earth, the author explains how small differences in temperatures, causing water to exist in different states on different planets - vapour on Venus, liquid on Earth and solid ice on Mars - have led to a great divergence in the evolutions of the three planets. The story of water on Mars, an aspect of great topical interest, offers an insight into the possibility (still only a theory) that there was once life on that planet. The book concludes by looking at the important role played by water in studies of habitable exoplanets.
The detection and exploration of extrasolar planets is one of the most exciting and fast moving areas of astronomical research at the present time. With over forty research programmes ongoing, and just as many planned, the search for these new worlds has become the main objective for a new generation of giant ground-based telescopes as well as many future space missions. Experimental methods and observational techniques are pushing existing instruments to their limits. The most exciting possibility offered by this research is the discovery of Earth-like extrasolar planets, with a mass comparable to that of Earth, located at the right distance from its star to host liquid water - in other words, a place where life could evolve. The authors tackle this challenging field of research by first looking at early searches for extrasolar planets, the very first discoveries and the observational techniques involved. They, then examine the very wide range of extrasolar planets that have been discovered during the past ten years and look at what we can learn about such planets by studying the bodies in our own solar system.The formation of planetary systems, the way in which such systems may evolve and the final systems of planets that result are then discussed. Finally, Drs Casoli and Encrenaz examine the possibilities for life on extrasolar planets, again using our own solar system as a model, and look to the plans for future extrasolar planet searches. A number of Appendices summarise the extrasolar planet discoveries to date.
Proceedings of the workshop on title], held in Les Houches, France, June 1991, designed to help the astronomical community in the preparation of observations for the Infrared Space Observatory (ISO) satellite. This mission, which will explore the infrared sky during 18 months (1994-1995) in Earth orbit, will be one of the major projects of space a
What is life and where can it exist? What searches are being made to identify conditions for life on other worlds? If extraterrestrial inhabited worlds are found, how can we explore them? In this book, two leading astrophysicists provide an engaging account of where we stand in our quest for habitable environments, in the Solar System and beyond. Starting from basic concepts, the narrative builds scientifically, including more in-depth material as boxed additions to the main text. The authors recount fascinating recent discoveries from space missions and observations using ground-based telescopes, of possible life-related artefacts in Martian meteorites, extrasolar planets, and subsurface oceans on Europa, Titan and Enceladus. They also provide a forward look to future missions. This is an exciting, informative read for anyone interested in the search for habitable and inhabited planets, and an excellent primer for students in astrobiology, habitability, planetary science and astronomy.
|
You may like...
Downton Abbey 2 - A New Era
Hugh Bonneville, Maggie Smith
Blu-ray disc
(1)
R141 Discovery Miles 1 410
Twice The Glory - The Making Of The…
Lloyd Burnard, Khanyiso Tshwaku
Paperback
|