Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
This text is a concise introduction to the partial differential equations which change from elliptic to hyperbolic type across a smooth hypersurface of their domain. These are becoming increasingly important in diverse sub-fields of both applied mathematics and engineering, for example: * The heating of fusion plasmas by electromagnetic waves * The behaviour of light near a caustic * Extremal surfaces in the space of special relativity * The formation of rapids; transonic and multiphase fluid flow * The dynamics of certain models for elastic structures * The shape of industrial surfaces such as windshields and airfoils * Pathologies of traffic flow * Harmonic fields in extended projective space They also arise in models for the early universe, for cosmic acceleration, and for possible violation of causality in the interiors of certain compact stars. Within the past 25 years, they have become central to the isometric embedding of Riemannian manifolds and the prescription of Gauss curvature for surfaces: topics in pure mathematics which themselves have important applications. Elliptic Hyperbolic Partial Differential Equations is derived from a mini-course given at the ICMS Workshop on Differential Geometry and Continuum Mechanics held in Edinburgh, Scotland in June 2013. The focus on geometry in that meeting is reflected in these notes, along with the focus on quasilinear equations. In the spirit of the ICMS workshop, this course is addressed both to applied mathematicians and to mathematically-oriented engineers. The emphasis is on very recent applications and methods, the majority of which have not previously appeared in book form.
Partial differential equations of mixed elliptic-hyperbolic type arise in diverse areas of physics and geometry, including fluid and plasma dynamics, optics, cosmology, traffic engineering, projective geometry, geometric variational theory, and the theory of isometric embeddings. And yet even the linear theory of these equations is at a very early stage. This text examines various Dirichlet problems which can be formulated for equations of Keldysh type, one of the two main classes of linear elliptic-hyperbolic equations. Open boundary conditions (in which data are prescribed on only part of the boundary) and closed boundary conditions (in which data are prescribed on the entire boundary) are both considered. Emphasis is on the formulation of boundary conditions for which solutions can be shown to exist in an appropriate functions space. Specific applications to plasma physics, optics, and analysis on projective spaces are discussed. (From the preface)
|
You may like...
|