Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
The present book covers the transport properties of superconductor/two dimensional electron gas Josephson junctions. Starting with the basic el ement, a superconductor/two dimensional electron gas interface, phase co herent Andreev reflection in hybrid Josephson junctions is introduced and further on, multiterminal structures are discussed. Special care is taken on explaining the underlying theoretical concepts related to the transport mech anisms. Employing a two dimensional electron gas in a semiconductor as a normal conductor opens up the possibility to observe effects not found in purely metallic junctions. One example is the light sensitivity of the semi conductor, which has a direct impact on the supercurrent in the Josephson junction. Many of the effects reported here rely on the fast technological progress in the epitaxial growth of III V semiconductor heterostructures. By using these layer systems, fascinating quantum effects have been found. Two examples out of many are the quantized conductance in a point contact and electron optics using ballistic electron beams. By combining heterostructures with su perconductors, many of the effects found in purely semiconductor systems can in a sense, be transferred to the superconducting state. A prominent example is the quantization of the critical current in a superconducting quantum point contact.
This revised and expanded edition of the first comprehensive introduction to the rapidly-evolving field of spintronics covers ferromagnetism in nano-electrodes, spin injection, spin manipulation, and the practical use of these effects in next-generation electronics. Moreover, the book now also includes spin-based optics, topological materials and insulators, and the quantum spin Hall effect.
As the first comprehensive introduction into the rapidly evolving field of spintronics, this textbook covers ferromagnetism in nano-electrodes, spin injection, spin manipulation, and the practical use of these effects in next-generation electronics. Based on foundations in quantum mechanics and solid state physics this textbook guides the reader to the forefront of research and development in the field, based on repeated lectures given by the author. From the content: Low-dimensional semiconductor structures Magnetism in solids Diluted magnetic semiconductors Magnetic electrodes Spin injection Spin transistor Spin interference Spin Hall effect Quantum spin Hall effect Topological insulators Quantum computation with electron spins
This book, featuring the most comprehensive treatment of Josephson junctions ever published, describes superconductor/two-dimensional-electron-gas (2DEG) structures, providing a better understanding of their transport properties. It also discusses the control of junctions using gate electrodes or injection currents, and the physical effects observed in these junctions.
|
You may like...
|