Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 12 of 12 matches in All Departments
This book is a comprehensive, unifying introduction to the field of mathematical analysis and the mathematics of computing. It develops the relevant theory at a modern level and it directly relates modern mathematical ideas to their diverse applications. The authors develop the whole theory. Starting with a simple axiom system for the real numbers, they then lay the foundations, developing the theory, exemplifying where it's applicable, in turn motivating further development of the theory. They progress from sets, structures, and numbers to metric spaces, continuous functions in metric spaces, linear normed spaces and linear mappings; and then differential calculus and its applications, the integral calculus, the gamma function, and linear integral operators. They then present important aspects of approximation theory, including numerical integration. The remaining parts of the book are devoted to ordinary differential equations, the discretization of operator equations, and numerical solutions of ordinary differential equations. This textbook contains many exercises of varying degrees of difficulty, suitable for self-study, and at the end of each chapter the authors present more advanced problems that shed light on interesting features, suitable for classroom seminars or study groups. It will be valuable for undergraduate and graduate students in mathematics, computer science, and related fields such as engineering. This is a rich field that has experienced enormous development in recent decades, and the book will also act as a reference for graduate students and practitioners who require a deeper understanding of the methodologies, techniques, and foundations.
This book is a comprehensive, unifying introduction to the field of mathematical analysis and the mathematics of computing. It develops the relevant theory at a modern level and it directly relates modern mathematical ideas to their diverse applications. The authors develop the whole theory. Starting with a simple axiom system for the real numbers, they then lay the foundations, developing the theory, exemplifying where it's applicable, in turn motivating further development of the theory. They progress from sets, structures, and numbers to metric spaces, continuous functions in metric spaces, linear normed spaces and linear mappings; and then differential calculus and its applications, the integral calculus, the gamma function, and linear integral operators. They then present important aspects of approximation theory, including numerical integration. The remaining parts of the book are devoted to ordinary differential equations, the discretization of operator equations, and numerical solutions of ordinary differential equations. This textbook contains many exercises of varying degrees of difficulty, suitable for self-study, and at the end of each chapter the authors present more advanced problems that shed light on interesting features, suitable for classroom seminars or study groups. It will be valuable for undergraduate and graduate students in mathematics, computer science, and related fields such as engineering. This is a rich field that has experienced enormous development in recent decades, and the book will also act as a reference for graduate students and practitioners who require a deeper understanding of the methodologies, techniques, and foundations.
This book constitutes the proceedings of the 25th International Conference on Algorithmic Learning Theory, ALT 2014, held in Bled, Slovenia, in October 2014, and co-located with the 17th International Conference on Discovery Science, DS 2014. The 21 papers presented in this volume were carefully reviewed and selected from 50 submissions. In addition the book contains 4 full papers summarizing the invited talks. The papers are organized in topical sections named: inductive inference; exact learning from queries; reinforcement learning; online learning and learning with bandit information; statistical learning theory; privacy, clustering, MDL, and Kolmogorov complexity.
This book constitutes the proceedings of the 24th International Conference on Algorithmic Learning Theory, ALT 2013, held in Singapore in October 2013, and co-located with the 16th International Conference on Discovery Science, DS 2013. The 23 papers presented in this volume were carefully reviewed and selected from 39 submissions. In addition the book contains 3 full papers of invited talks. The papers are organized in topical sections named: online learning, inductive inference and grammatical inference, teaching and learning from queries, bandit theory, statistical learning theory, Bayesian/stochastic learning, and unsupervised/semi-supervised learning.
This book constitutes the refereed proceedings of the 23rd International Conference on Algorithmic Learning Theory, ALT 2012, held in Lyon, France, in October 2012. The conference was co-located and held in parallel with the 15th International Conference on Discovery Science, DS 2012. The 23 full papers and 5 invited talks presented were carefully reviewed and selected from 47 submissions. The papers are organized in topical sections on inductive inference, teaching and PAC learning, statistical learning theory and classification, relations between models and data, bandit problems, online prediction of individual sequences, and other models of online learning.
This book constitutes the refereed proceedings of the 22nd
International Conference on Algorithmic Learning Theory, ALT 2011,
held in Espoo, Finland, in October 2011, co-located with the 14th
International Conference on Discovery Science, DS 2011.
This book constitutes the refereed proceedings of the 20th International Conference on Algorithmic Learning Theory, ALT 2009, held in Porto, Portugal, in October 2009, co-located with the 12th International Conference on Discovery Science, DS 2009. The 26 revised full papers presented together with the abstracts of 5 invited talks were carefully reviewed and selected from 60 submissions. The papers are divided into topical sections of papers on online learning, learning graphs, active learning and query learning, statistical learning, inductive inference, and semisupervised and unsupervised learning. The volume also contains abstracts of the invited talks: Sanjoy Dasgupta, The Two Faces of Active Learning; Hector Geffner, Inference and learning in Planning; Jiawei Han, Mining Heterogeneous; Information Networks By Exploring the Power of Links, Yishay Mansour, Learning and Domain Adaptation; Fernando C.N. Pereira, Learning on the Web.
This volume contains the papers presented at the 12th Annual Conference on Algorithmic Learning Theory (ALT 2001), which was held in Washington DC, USA, during November 25-28, 2001. The main objective of the conference is to provide an inter-disciplinary forum for the discussion of theoretical foundations of machine learning, as well as their relevance to practical applications. The conference was co-located with the Fourth International Conference on Discovery Science (DS 2001). The volume includes 21 contributed papers. These papers were selected by the program committee from 42 submissions based on clarity, signi?cance, o- ginality, and relevance to theory and practice of machine learning. Additionally, the volume contains the invited talks of ALT 2001 presented by Dana Angluin of Yale University, USA, Paul R. Cohen of the University of Massachusetts at Amherst, USA, and the joint invited talk for ALT 2001 and DS 2001 presented by Setsuo Arikawa of Kyushu University, Japan. Furthermore, this volume includes abstracts of the invited talks for DS 2001 presented by Lindley Darden and Ben Shneiderman both of the University of Maryland at College Park, USA. The complete versions of these papers are published in the DS 2001 proceedings (Lecture Notes in Arti?cial Intelligence Vol. 2226).
This volume contains all the papers presented at the Ninth International Con- rence on Algorithmic Learning Theory (ALT'98), held at the European education centre Europ]aisches Bildungszentrum (ebz) Otzenhausen, Germany, October 8{ 10, 1998. The Conference was sponsored by the Japanese Society for Arti cial Intelligence (JSAI) and the University of Kaiserslautern. Thirty-four papers on all aspects of algorithmic learning theory and related areas were submitted, all electronically. Twenty-six papers were accepted by the program committee based on originality, quality, and relevance to the theory of machine learning. Additionally, three invited talks presented by Akira Maruoka of Tohoku University, Arun Sharma of the University of New South Wales, and Stefan Wrobel from GMD, respectively, were featured at the conference. We would like to express our sincere gratitude to our invited speakers for sharing with us their insights on new and exciting developments in their areas of research. This conference is the ninth in a series of annual meetings established in 1990. The ALT series focuses on all areas related to algorithmic learning theory including (but not limited to): the theory of machine learning, the design and analysis of learning algorithms, computational logic of/for machine discovery, inductive inference of recursive functions and recursively enumerable languages, learning via queries, learning by arti cial and biological neural networks, pattern recognition, learning by analogy, statistical learning, Bayesian/MDL estimation, inductive logic programming, robotics, application of learning to databases, and gene analyses."
This book constitutes the refereed proceedings of the 6th
International Workshop on Algorithmic Learning Theory, ALT '95,
held in Fukuoka, Japan, in October 1995.
This book constitutes the refereed proceedings of the 5th International Symposium on Stochastic Algorithms, Foundations and Applications, SAGA 2009, held in Sapporo, Japan, in October 2009. The 15 revised full papers presented together with 2 invited papers were carefully reviewed and selected from 22 submissions. The papers are organized in topical sections on learning, graphs, testing, optimization and caching, as well as stochastic algorithms in bioinformatics.
This volume contains papers presented at the 19th International Conference on Algorithmic Learning Theory (ALT 2008), which was held in Budapest, Hungary during October 13-16, 2008. The conference was co-located with the 11th - ternational Conference on Discovery Science (DS 2008). The technical program of ALT 2008 contained 31 papers selected from 46 submissions, and 5 invited talks. The invited talks were presented in joint sessions of both conferences. ALT 2008 was the 19th in the ALT conference series, established in Japan in 1990. The series Analogical and Inductive Inference is a predecessor of this series: it was held in 1986, 1989 and 1992, co-located with ALT in 1994, and s- sequently merged with ALT. ALT maintains its strong connections to Japan, but has also been held in other countries, such as Australia, Germany, Italy, Sin- pore, Spain and the USA. The ALT conference series is supervised by its Steering Committee: Naoki Abe (IBM T. J.
|
You may like...
|