Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
An original motivation for algebraic geometry was to understand curves and surfaces in three dimensions. Recent theoretical and technological advances in areas such as robotics, computer vision, computer-aided geometric design and molecular biology, together with the increased availability of computational resources, have brought these original questions once more into the forefront of research. One particular challenge is to combine applicable methods from algebraic geometry with proven techniques from piecewise-linear computational geometry (such as Voronoi diagrams and hyperplane arrangements) to develop tools for treating curved objects. These research efforts may be summarized under the term nonlinear computational geometry. This volume grew out of an IMA workshop on Nonlinear Computational Geometry in May/June 2007 (organized by I.Z. Emiris, R. Goldman, F. Sottile, T. Theobald) which gathered leading experts in this emerging field. The research and expository articles in the volume are intended to provide an overview of nonlinear computational geometry. Since the topic involves computational geometry, algebraic geometry, and geometric modeling, the volume has contributions from all of these areas. By addressing a broad range of issues from purely theoretical and algorithmic problems, to implementation and practical applications this volume conveys the spirit of the IMA workshop.
Polyhedral and Algebraic Methods in Computational Geometry provides a thorough introduction into algorithmic geometry and its applications. It presents its primary topics from the viewpoints of discrete, convex and elementary algebraic geometry. The first part of the book studies classical problems and techniques that refer to polyhedral structures. The authors include a study on algorithms for computing convex hulls as well as the construction of Voronoi diagrams and Delone triangulations. The second part of the book develops the primary concepts of (non-linear) computational algebraic geometry. Here, the book looks at Groebner bases and solving systems of polynomial equations. The theory is illustrated by applications in computer graphics, curve reconstruction and robotics. Throughout the book, interconnections between computational geometry and other disciplines (such as algebraic geometry, optimization and numerical mathematics) are established. Polyhedral and Algebraic Methods in Computational Geometry is directed towards advanced undergraduates in mathematics and computer science, as well as towards engineering students who are interested in the applications of computational geometry.
An original motivation for algebraic geometry was to understand curves and surfaces in three dimensions. Recent theoretical and technological advances in areas such as robotics, computer vision, computer-aided geometric design and molecular biology, together with the increased availability of computational resources, have brought these original questions once more into the forefront of research. One particular challenge is to combine applicable methods from algebraic geometry with proven techniques from piecewise-linear computational geometry (such as Voronoi diagrams and hyperplane arrangements) to develop tools for treating curved objects. These research efforts may be summarized under the term nonlinear computational geometry. This volume grew out of an IMA workshop on Nonlinear Computational Geometry in May/June 2007 (organized by I.Z. Emiris, R. Goldman, F. Sottile, T. Theobald) which gathered leading experts in this emerging field. The research and expository articles in the volume are intended to provide an overview of nonlinear computational geometry. Since the topic involves computational geometry, algebraic geometry, and geometric modeling, the volume has contributions from all of these areas. By addressing a broad range of issues from purely theoretical and algorithmic problems, to implementation and practical applications this volume conveys the spirit of the IMA workshop.
One of the main problems in chip design is the huge number of possible combinations of individual chip elements, leading to a combinatorial explosion as chips become more complex. New key results in theoretical computer science and in the design of data structures and efficient algorithms, can be applied fruitfully here. The application of ordered binary decision diagrams (OBDDs) has led to dramatic performance improvements in many computer-aided design projects. This textbook provides an introduction to the foundations of this interdisciplinary research area with an emphasis on applications in computer-aided circuit design and formal verification.
Das an Studienanfanger der Mathematik gerichtete Lehrbuch bietet eine breit angelegte Einfuhrung in verschiedene Facetten der computerorientierten Mathematik. Es ermoeglicht eine fruhzeitige und wertvolle Auseinandersetzung mit computerorientierten Methoden, Denkweisen und Arbeitstechniken innerhalb der Mathematik. Hierzu werden grundlegende mathematische Teilgebiete behandelt, die eine enge Beziehung zu computerorientierten Aspekten haben: Graphen, mathematische Algorithmen, Rekursionsgleichungen, computerorientierte lineare Algebra, Zahlen, Polynome und ihre Nullstellen. Anhand des mathematischen Kernstrangs werden Einblicke in die Modellierung, Analyse und algorithmische Aufbereitung fundamentaler mathematischer Sachverhalte gegeben. Eine Besonderheit des Buches ist die Verwendung des sich immer starker in Forschung und Lehre verbreitenden, frei verfugbaren Software-Systems Sage. Das Buch eignet sich besonders gut zur Komplementierung der klassischen Grundvorlesungen in Analysis und linearer Algebra.
In dem Lehrbuch wird eine mathematisch orientierte Einfuhrung in die algorithmische Geometrie gegeben. Im ersten Teil werden "klassische" Probleme und Techniken behandelt, die sich auf polyedrische (= linear begrenzte) Objekte beziehen. Hierzu gehoeren beispielsweise Algorithmen zur Berechnung konvexer Hullen und die Konstruktion von Voronoi-Diagrammen. Im zweiten Teil werden grundlegende Methoden der algorithmischen algebraischen Geometrie entwickelt und anhand von Anwendungen aus Computergrafik, Kurvenrekonstruktion und Robotik illustriert. Das Buch eignet sich fur ein fortgeschrittenes Modul in den derzeit neu konzipierten Bachelor-Studiengangen in Mathematik und Informatik.
Eines der Hauptprobleme beim Chipentwurf besteht darin, dass die Anzahl der zu bewaltigenden Kombinationen der einzelnen Chipbausteine ins Unermessliche steigt. Hier hat sich eine sehr fruchtbare Verbindung zu einem Kerngebiet der theoretischen Informatik, dem Gebiet des Entwurfs von Datenstrukturen und effizienten Algorithmen, herstellen lassen: das Konzept der geordneten binaren Entscheidungsgraphen, das in zahlreichen CAD-Projekten zu einer betrachtlichen Leistungssteigerung gefuhrt hat. Die Autoren stellen die Grundlagen dieses interdisziplinaren Forschungsgebiets dar und behandeln wichtige Anwendungen aus dem rechnergestutzten Schaltkreisentwurf.
|
You may like...
Gangster - Ware Verhale Van Albei Kante…
Carla van der Spuy
Paperback
We Were Perfect Parents Until We Had…
Vanessa Raphaely, Karin Schimke
Paperback
|