|
Showing 1 - 7 of
7 matches in All Departments
An original motivation for algebraic geometry was to understand
curves and surfaces in three dimensions. Recent theoretical and
technological advances in areas such as robotics, computer vision,
computer-aided geometric design and molecular biology, together
with the increased availability of computational resources, have
brought these original questions once more into the forefront of
research. One particular challenge is to combine applicable methods
from algebraic geometry with proven techniques from
piecewise-linear computational geometry (such as Voronoi diagrams
and hyperplane arrangements) to develop tools for treating curved
objects. These research efforts may be summarized under the term
nonlinear computational geometry. This volume grew out of an IMA
workshop on Nonlinear Computational Geometry in May/June 2007
(organized by I.Z. Emiris, R. Goldman, F. Sottile, T. Theobald)
which gathered leading experts in this emerging field. The research
and expository articles in the volume are intended to provide an
overview of nonlinear computational geometry. Since the topic
involves computational geometry, algebraic geometry, and geometric
modeling, the volume has contributions from all of these areas. By
addressing a broad range of issues from purely theoretical and
algorithmic problems, to implementation and practical applications
this volume conveys the spirit of the IMA workshop.
Polyhedral and Algebraic Methods in Computational Geometry provides
a thorough introduction into algorithmic geometry and its
applications. It presents its primary topics from the viewpoints of
discrete, convex and elementary algebraic geometry. The first part
of the book studies classical problems and techniques that refer to
polyhedral structures. The authors include a study on algorithms
for computing convex hulls as well as the construction of Voronoi
diagrams and Delone triangulations. The second part of the book
develops the primary concepts of (non-linear) computational
algebraic geometry. Here, the book looks at Groebner bases and
solving systems of polynomial equations. The theory is illustrated
by applications in computer graphics, curve reconstruction and
robotics. Throughout the book, interconnections between
computational geometry and other disciplines (such as algebraic
geometry, optimization and numerical mathematics) are established.
Polyhedral and Algebraic Methods in Computational Geometry is
directed towards advanced undergraduates in mathematics and
computer science, as well as towards engineering students who are
interested in the applications of computational geometry.
An original motivation for algebraic geometry was to understand
curves and surfaces in three dimensions. Recent theoretical and
technological advances in areas such as robotics, computer vision,
computer-aided geometric design and molecular biology, together
with the increased availability of computational resources, have
brought these original questions once more into the forefront of
research. One particular challenge is to combine applicable methods
from algebraic geometry with proven techniques from
piecewise-linear computational geometry (such as Voronoi diagrams
and hyperplane arrangements) to develop tools for treating curved
objects. These research efforts may be summarized under the term
nonlinear computational geometry. This volume grew out of an IMA
workshop on Nonlinear Computational Geometry in May/June 2007
(organized by I.Z. Emiris, R. Goldman, F. Sottile, T. Theobald)
which gathered leading experts in this emerging field. The research
and expository articles in the volume are intended to provide an
overview of nonlinear computational geometry. Since the topic
involves computational geometry, algebraic geometry, and geometric
modeling, the volume has contributions from all of these areas. By
addressing a broad range of issues from purely theoretical and
algorithmic problems, to implementation and practical applications
this volume conveys the spirit of the IMA workshop.
One of the main problems in chip design is the huge number of possible combinations of individual chip elements, leading to a combinatorial explosion as chips become more complex. New key results in theoretical computer science and in the design of data structures and efficient algorithms, can be applied fruitfully here. The application of ordered binary decision diagrams (OBDDs) has led to dramatic performance improvements in many computer-aided design projects. This textbook provides an introduction to the foundations of this interdisciplinary research area with an emphasis on applications in computer-aided circuit design and formal verification.
Das an Studienanfanger der Mathematik gerichtete Lehrbuch bietet
eine breit angelegte Einfuhrung in verschiedene Facetten der
computerorientierten Mathematik. Es ermoeglicht eine fruhzeitige
und wertvolle Auseinandersetzung mit computerorientierten Methoden,
Denkweisen und Arbeitstechniken innerhalb der Mathematik. Hierzu
werden grundlegende mathematische Teilgebiete behandelt, die eine
enge Beziehung zu computerorientierten Aspekten haben: Graphen,
mathematische Algorithmen, Rekursionsgleichungen,
computerorientierte lineare Algebra, Zahlen, Polynome und ihre
Nullstellen. Anhand des mathematischen Kernstrangs werden Einblicke
in die Modellierung, Analyse und algorithmische Aufbereitung
fundamentaler mathematischer Sachverhalte gegeben. Eine
Besonderheit des Buches ist die Verwendung des sich immer starker
in Forschung und Lehre verbreitenden, frei verfugbaren
Software-Systems Sage. Das Buch eignet sich besonders gut zur
Komplementierung der klassischen Grundvorlesungen in Analysis und
linearer Algebra.
In dem Lehrbuch wird eine mathematisch orientierte Einfuhrung in
die algorithmische Geometrie gegeben. Im ersten Teil werden
"klassische" Probleme und Techniken behandelt, die sich auf
polyedrische (= linear begrenzte) Objekte beziehen. Hierzu gehoeren
beispielsweise Algorithmen zur Berechnung konvexer Hullen und die
Konstruktion von Voronoi-Diagrammen. Im zweiten Teil werden
grundlegende Methoden der algorithmischen algebraischen Geometrie
entwickelt und anhand von Anwendungen aus Computergrafik,
Kurvenrekonstruktion und Robotik illustriert. Das Buch eignet sich
fur ein fortgeschrittenes Modul in den derzeit neu konzipierten
Bachelor-Studiengangen in Mathematik und Informatik.
Eines der Hauptprobleme beim Chipentwurf besteht darin, dass die
Anzahl der zu bewaltigenden Kombinationen der einzelnen
Chipbausteine ins Unermessliche steigt. Hier hat sich eine sehr
fruchtbare Verbindung zu einem Kerngebiet der theoretischen
Informatik, dem Gebiet des Entwurfs von Datenstrukturen und
effizienten Algorithmen, herstellen lassen: das Konzept der
geordneten binaren Entscheidungsgraphen, das in zahlreichen
CAD-Projekten zu einer betrachtlichen Leistungssteigerung gefuhrt
hat. Die Autoren stellen die Grundlagen dieses interdisziplinaren
Forschungsgebiets dar und behandeln wichtige Anwendungen aus dem
rechnergestutzten Schaltkreisentwurf.
|
You may like...
The Expendables 4
Jason Statham, Sylvester Stallone
Blu-ray disc
R329
Discovery Miles 3 290
Uglies
Scott Westerfeld
Paperback
R265
R75
Discovery Miles 750
X-Men: Apocalypse
James McAvoy, Michael Fassbender, …
Blu-ray disc
R32
Discovery Miles 320
|