![]() |
![]() |
Your cart is empty |
||
Showing 1 - 2 of 2 matches in All Departments
This book is about how big is the universe and how small are quarks, and what are the sizes of dozens of things between these two extremes. It describes the sizes of atoms and planets, quarks and galaxies, cells and sequoias. It is a romp through forty-five orders of magnitude from the smallest sub-nuclear particles we have measured, to the edge of the observed universe. It also looks at time, from the epic age of the cosmos to the fleeting lifetimes of ethereal particles. It is a narrative that trips its way from stellar magnitudes to the clocks on GPS satellites, from the nearly logarithmic scales of a piano keyboard through a system of numbers invented by Archimedes and on to the measurement of the size of an atom. Why do some things happen at certain scales? Why are cells a hundred thousandths of a meter across? Why are stars never smaller than about 100 million meters in diameter? Why are trees limited to about 120 meters in height? Why are planets spherical, but asteroids not? Often the size of an object is determined by something simple but quite unexpected. The size of a cell and a star depend in part on the ratio of surface area to volume. The divide between the size of a spherical planet and an irregular asteroid is the balance point between the gravitational forces and the chemical forces in nature. Most importantly, with a very few basic principles, it all makes sense. The world really is a most reasonable place.
No one has ever seen a quark. Yet physicists seem to know quite a lot about the properties and behavior of these ubiquitous elementary particles. Here a top researcher introduces us to a fascinating but invisible realm that is part of our everyday life. Timothy Smith tells us what we know about quarks--and how we know it. Though the quarks that make science headlines are typically laboratory creations generated under extreme conditions, most quarks occur naturally. They reside in the protons and neutrons that make up almost all of the universe's known matter, from human DNA to distant nebulae, from books and tables to neutron stars. Smith explains what these quarks are, how they act, and why physicists believe in them sight unseen. How do quarks arrange themselves? What other combinations can nature make? How do quarks hold nuclei together? What else is happening in their hidden worlds? It turns out that these questions can be answered using a few simple principles, such as the old standby: opposites attract. With these few principles, Smith shows how quarks dance around each other and explains what physicists mean when they refer to "up" and "down" quarks and talk about a quark's color, flavor, and spin. Smith also explains how we know what we know about these oddly aloof particles, which are eternally confined inside larger particles. He explains how quark experiments are mounted and how massive accelerators, targets, and detectors work together to collect the data that scientists use to infer what quarks are up to. A nonmathematical tour of the quark world, this book is written for students, educators, and all who enjoy scientific exploration--whether they seek a taste of subnuclear physics or just wonder about nature on the smallest of scales.
|
![]() ![]() You may like...
The Lie Of 1652 - A Decolonised History…
Patric Tariq Mellet
Paperback
![]()
|