Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
The field of database security has expanded greatly, with the rapid development of global inter-networked infrastructure. Databases are no longer stand-alone systems accessible only to internal users of organizations. Today, businesses must allow selective access from different security domains. New data services emerge every day, bringing complex challenges to those whose job is to protect data security. The Internet and the web offer means for collecting and sharing data with unprecedented flexibility and convenience, presenting threats and challenges of their own. This book identifies and addresses these new challenges and more, offering solid advice for practitioners and researchers in industry.
Written by 30 worldwide leading scientists, experts and medical doctors, this comprehensive book provides a broad, multi-disciplinary overview on hemoperfusion. The research of the subject was started by TMS Chang - the pioneer and inventor of microcapsules who is well known as the 'the Father of Microcapsules.' The book presents the numerous recent developments in this field. A series of tailor-made, toxin removing and cell separating adsorbents or microcapsules with unique properties have been designed, prepared and produced for use in the treatment of diseases such as autoimmune disease, drug over-dose, acute inflammation, etc., in which ordinary medical treatments shows little or no efficacy. Various modalities of hemoperfusion treatments and results are described to provide readers with up-to-date information on the highly interdisciplinary field of hemoperfusion.
Going beyond performing simple analyses, researchers involved in the highly dynamic field of computational intelligent data analysis design algorithms that solve increasingly complex data problems in changing environments, including economic, environmental, and social data. Computational Intelligent Data Analysis for Sustainable Development presents novel methodologies for automatically processing these types of data to support rational decision making for sustainable development. Through numerous case studies and applications, it illustrates important data analysis methods, including mathematical optimization, machine learning, signal processing, and temporal and spatial analysis, for quantifying and describing sustainable development problems. With a focus on integrated sustainability analysis, the book presents a large-scale quadratic programming algorithm to expand high-resolution input-output tables from the national scale to the multinational scale to measure the carbon footprint of the entire trade supply chain. It also quantifies the error or dispersion between different reclassification and aggregation schemas, revealing that aggregation errors have a high concentration over specific regions and sectors. The book summarizes the latest contributions of the data analysis community to climate change research. A profuse amount of climate data of various types is available, providing a rich and fertile playground for future data mining and machine learning research. The book also pays special attention to several critical challenges in the science of climate extremes that are not handled by the current generation of climate models. It discusses potential conceptual and methodological directions to build a close integration between physical understanding, or physics-based modeling, and data-driven insights. The book then covers the conservation of species and ecologically valuable land. A case study on the Pennsylvania Dirt and Gravel Roads Program demonstrates that multiple-objective linear programming is a more versatile and efficient approach than the widely used benefit targeting selection process. Moving on to renewable energy and the need for smart grids, the book explores how the ongoing transformation to a sustainable energy system of renewable sources leads to a paradigm shift from demand-driven generation to generation-driven demand. It shows how to maximize renewable energy as electricity by building a supergrid or mixing renewable sources with demand management and storage. It also presents intelligent data analysis for real-time detection of disruptive events from power system frequency data collected using an existing Internet-based frequency monitoring network as well as evaluates a set of computationally intelligent techniques for long-term wind resource assessment. In addition, the book gives an example of how temporal and spatial data analysis tools are used to gather knowledge about behavioral data and address important social problems such as criminal offenses. It also applies constraint logic programming to a planning problem: the environmental and social impact assessment of the regional energy plan of the Emilia-Romagna region of Italy. Sustainable development problems, such as global warming, resource shortages, global species loss, and pollution, push researchers to create powerful data analysis approaches that analysts can then use to gain insight into these issues to support rational decision making. This volume shows both the data analysis and sustainable development communities how to use intelligent data analysis tools to address practical problems and encourages researchers to develop better methods.
Going beyond performing simple analyses, researchers involved in the highly dynamic field of computational intelligent data analysis design algorithms that solve increasingly complex data problems in changing environments, including economic, environmental, and social data. Computational Intelligent Data Analysis for Sustainable Development presents novel methodologies for automatically processing these types of data to support rational decision making for sustainable development. Through numerous case studies and applications, it illustrates important data analysis methods, including mathematical optimization, machine learning, signal processing, and temporal and spatial analysis, for quantifying and describing sustainable development problems. With a focus on integrated sustainability analysis, the book presents a large-scale quadratic programming algorithm to expand high-resolution input-output tables from the national scale to the multinational scale to measure the carbon footprint of the entire trade supply chain. It also quantifies the error or dispersion between different reclassification and aggregation schemas, revealing that aggregation errors have a high concentration over specific regions and sectors. The book summarizes the latest contributions of the data analysis community to climate change research. A profuse amount of climate data of various types is available, providing a rich and fertile playground for future data mining and machine learning research. The book also pays special attention to several critical challenges in the science of climate extremes that are not handled by the current generation of climate models. It discusses potential conceptual and methodological directions to build a close integration between physical understanding, or physics-based modeling, and data-driven insights. The book then covers the conservation of species and ecologically valuable land. A case study on the Pennsylvania Dirt and Gravel Roads Program demonstrates that multiple-objective linear programming is a more versatile and efficient approach than the widely used benefit targeting selection process. Moving on to renewable energy and the need for smart grids, the book explores how the ongoing transformation to a sustainable energy system of renewable sources leads to a paradigm shift from demand-driven generation to generation-driven demand. It shows how to maximize renewable energy as electricity by building a supergrid or mixing renewable sources with demand management and storage. It also presents intelligent data analysis for real-time detection of disruptive events from power system frequency data collected using an existing Internet-based frequency monitoring network as well as evaluates a set of computationally intelligent techniques for long-term wind resource assessment. In addition, the book gives an example of how temporal and spatial data analysis tools are used to gather knowledge about behavioral data and address important social problems such as criminal offenses. It also applies constraint logic programming to a planning problem: the environmental and social impact assessment of the regional energy plan of the Emilia-Romagna region of Italy. Sustainable development problems, such as global warming, resource shortages, global species loss, and pollution, push researchers to create powerful data analysis approaches that analysts can then use to gain insight into these issues to support rational decision making. This volume shows both the data analysis and sustainable development communities how to use intelligent data analysis tools to address practical problems and encourages researchers to develop better methods.
The field of database security has expanded greatly, with the rapid development of global inter-networked infrastructure. Databases are no longer stand-alone systems accessible only to internal users of organizations. Today, businesses must allow selective access from different security domains. New data services emerge every day, bringing complex challenges to those whose job is to protect data security. The Internet and the web offer means for collecting and sharing data with unprecedented flexibility and convenience, presenting threats and challenges of their own. This book identifies and addresses these new challenges and more, offering solid advice for practitioners and researchers in industry.
This book contains new research essays of linguistic interface studies in or related to East Asian languages. Written by 14 colleagues or former students of Yoshihisa Kitagawa, it is also a book paying tribute to his decades of scholarships on linguistic interface studies. The chapters therein range from interface studies in syntax and other linguistic areas such as morphology, phonology, semantics, pragmatics, language acquisition, language evolution, and language faculty science. The languages under discussion are mainly East Asian languages such as Chinese, Japanese, and Korean, but also include Jordanian Arabic and Spanish, under comparative studies with respect to East Asian languages. The book appeals to both seasoned and novice researchers in linguistics, East Asian languages, and modern languages.
|
You may like...
|