Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
Video segmentation is the most fundamental process for appropriate index ing and retrieval of video intervals. In general, video streams are composed 1 of shots delimited by physical shot boundaries. Substantial work has been done on how to detect such shot boundaries automatically (Arman et aI. , 1993) (Zhang et aI. , 1993) (Zhang et aI. , 1995) (Kobla et aI. , 1997). Through the inte gration of technologies such as image processing, speech/character recognition and natural language understanding, keywords can be extracted and associated with these shots for indexing (Wactlar et aI. , 1996). A single shot, however, rarely carries enough amount of information to be meaningful by itself. Usu ally, it is a semantically meaningful interval that most users are interested in re trieving. Generally, such meaningful intervals span several consecutive shots. There hardly exists any efficient and reliable technique, either automatic or manual, to identify all semantically meaningful intervals within a video stream. Works by (Smith and Davenport, 1992) (Oomoto and Tanaka, 1993) (Weiss et aI. , 1995) (Hjelsvold et aI. , 1996) suggest manually defining all such inter vals in the database in advance. However, even an hour long video may have an indefinite number of meaningful intervals. Moreover, video data is multi interpretative. Therefore, given a query, what is a meaningful interval to an annotator may not be meaningful to the user who issues the query. In practice, manual indexing of meaningful intervals is labour intensive and inadequate.
This book constitutes the thoroughly refereed proceedings of the 9th Italian Research Conference on Digital Libraries, held in Rome, Italy, in January/February 2013. The 18 full papers presented together with an invited paper and a panel paper were selected from extended versions of the presentations given at the conference. The papers then went through an additional round of reviewing and revision after the event. The papers are organized in topical sections on information access; Digital Library (DL) architecture; DL projects; semantics and DLs; models and evaluation for DLs; DL applications; discussing DL perspectives.
Video segmentation is the most fundamental process for appropriate index ing and retrieval of video intervals. In general, video streams are composed 1 of shots delimited by physical shot boundaries. Substantial work has been done on how to detect such shot boundaries automatically (Arman et aI. , 1993) (Zhang et aI. , 1993) (Zhang et aI. , 1995) (Kobla et aI. , 1997). Through the inte gration of technologies such as image processing, speech/character recognition and natural language understanding, keywords can be extracted and associated with these shots for indexing (Wactlar et aI. , 1996). A single shot, however, rarely carries enough amount of information to be meaningful by itself. Usu ally, it is a semantically meaningful interval that most users are interested in re trieving. Generally, such meaningful intervals span several consecutive shots. There hardly exists any efficient and reliable technique, either automatic or manual, to identify all semantically meaningful intervals within a video stream. Works by (Smith and Davenport, 1992) (Oomoto and Tanaka, 1993) (Weiss et aI. , 1995) (Hjelsvold et aI. , 1996) suggest manually defining all such inter vals in the database in advance. However, even an hour long video may have an indefinite number of meaningful intervals. Moreover, video data is multi interpretative. Therefore, given a query, what is a meaningful interval to an annotator may not be meaningful to the user who issues the query. In practice, manual indexing of meaningful intervals is labour intensive and inadequate.
This book constitutes the proceedings of the Third International Conference of the CLEF Initiative, CLEF 2012, held in Rome, Italy, in September 2012. The 14 papers and 3 poster abstracts presented were carefully reviewed and selected for inclusion in this volume. Furthermore, the books contains 2 keynote papers. The papers are organized in topical sections named: benchmarking and evaluation initiatives; information access; and evaluation methodologies and infrastructure.
This lecture covers several core issues in user-centered data management, including how to design usable interfaces that suitably support database tasks, and relevant approaches to visual querying, information visualization, and visual data mining. Novel interaction paradigms, e.g., mobile and interfaces that go beyond the visual dimension, are also discussed. Table of Contents: Why User-Centered / The Early Days: Visual Query Systems / Beyond Querying / More Advanced Applications / Non-Visual Interfaces / Conclusions
The LNCS Journal on Data Semantics is devoted to the presentation of notable work that addresses research and development on issues related to data semantics. Based on the highly visible publication platform Lecture Notes in Computer Science, this new journal is widely disseminated and available worldwide. The scope of the journal ranges from theories supporting the formal definition of semantic content to innovative domain-specific applications of semantic knowledge.
|
You may like...
|