|
Showing 1 - 4 of
4 matches in All Departments
Since the inception of this volume, the world's nancial climate has
radically changed.
Theemphasishasshiftedfromboomingeconomiesandeconomicgrowth
totherealityofrecessionanddiminishingoutlook.
Witheconomicdownturncomes
opportunity,inallareasofchemistryfromresearchanddevelopmentthroughto
productregistrationandriskassessment,replacementsarebeingsoughtforcostly
time-consumingprocesses.
Leadingamongstthereplacementsaremodelswithtrue
predictivecapability. Ofthesecomputationalmodelsarepreferred. This
volume addresses a broad need within various areas of the "chemical
industries", from pharmaceuticals and pesticides to personal
products to provide
computationalmethodstopredicttheeffects,activitiesandpropertiesofmolecules.
Itaddressestheuseofmodelstodesignnewmoleculesandassesstheirfateand
effectsbothtotheenvironmentandtohumanhealth.
Thereisanemphasisrunning
throughoutthisvolumetoproducerobustmodelssuitableforpurpose.
Thevolume aimstoallowthereaderto
nddataanddescriptorsanddevelop,discoverandutilise validmodels.
Gdansk, ' Poland TomaszPuzyn Jackson,MS,USA JerzyLeszczynski
Liverpool,UK MarkT. D. Cronin May2009 CONTENTS Part I Theory of
QSAR 1 QuantitativeStructure-ActivityRelationships(QSARs)-
ApplicationsandMethodology...3 Mark T. D. Cronin 1. 1.
Introduction...3 1. 2. PurposeofQSAR...4 1. 3.
ApplicationsofQSAR...4 1. 4. Methods...5 1. 5.
TheCornerstonesofSuccessfulPredictiveModels ...7 1. 6.
AValidated(Q)SARoraValidPrediction? ...9 1. 7.
UsinginSilicoTechniques ...9 1. 8. NewAreasforinSilicoModels...11
1. 9. Conclusions...11 References ...11 2
TheUseofQuantumMechanicsDerivedDescriptorsin
ComputationalToxicology...13 Steven J. Enoch 2. 1.
Introduction...13 2. 2. TheSchrodingerEquation...15 2. 3.
Hartree-FockTheory...17 2. 4. Semi-EmpiricalMethods:AM1andRM1...18
2. 5. ABInitio:DensityFunctionalTheory...19 2. 6.
QSARforNon-ReactiveMechanismsofAcute(Aquatic) Toxicity...19 2. 7.
QSARsforReactiveToxicityMechanisms...21 2. 7. 1.
AquaticToxicityandSkinSensitisation...21 2. 7. 2.
QSARsforMutagenicity ...24 2. 8. FutureDirectionsandOutlook...25 2.
9. Conclusions...26 References ...26 vii viii Contents 3
MolecularDescriptors...29 Viviana Consonni and Roberto Todeschini
3. 1. Introduction...29 3. 1. 1. De nitions...29 3. 1. 2.
History...31 3. 1. 3. Theoreticalvs. ExperimentalDescriptors...33
3. 2. MolecularRepresentation ...35 3. 3. TopologicalIndexes...38
3. 3. 1. MolecularGraphs...38 3. 3. 2. De
nitionandCalculationofTopologicalIndexes(TIs) 39 3. 3. 3.
Graph-TheoreticalMatrixes...42 3. 3. 4. ConnectivityIndexes ...48
3. 3. 5. CharacteristicPolynomial ...50 3. 3. 6. SpectralIndexes
...53 3. 4. AutocorrelationDescriptors ...
Since the inception of this volume, the world's nancial climate has
radically changed.
Theemphasishasshiftedfromboomingeconomiesandeconomicgrowth
totherealityofrecessionanddiminishingoutlook.
Witheconomicdownturncomes
opportunity,inallareasofchemistryfromresearchanddevelopmentthroughto
productregistrationandriskassessment,replacementsarebeingsoughtforcostly
time-consumingprocesses.
Leadingamongstthereplacementsaremodelswithtrue
predictivecapability. Ofthesecomputationalmodelsarepreferred. This
volume addresses a broad need within various areas of the "chemical
industries", from pharmaceuticals and pesticides to personal
products to provide
computationalmethodstopredicttheeffects,activitiesandpropertiesofmolecules.
Itaddressestheuseofmodelstodesignnewmoleculesandassesstheirfateand
effectsbothtotheenvironmentandtohumanhealth.
Thereisanemphasisrunning
throughoutthisvolumetoproducerobustmodelssuitableforpurpose.
Thevolume aimstoallowthereaderto
nddataanddescriptorsanddevelop,discoverandutilise validmodels.
Gdansk, ' Poland TomaszPuzyn Jackson,MS,USA JerzyLeszczynski
Liverpool,UK MarkT. D. Cronin May2009 CONTENTS Part I Theory of
QSAR 1 QuantitativeStructure-ActivityRelationships(QSARs)-
ApplicationsandMethodology...3 Mark T. D. Cronin 1. 1.
Introduction...3 1. 2. PurposeofQSAR...4 1. 3.
ApplicationsofQSAR...4 1. 4. Methods...5 1. 5.
TheCornerstonesofSuccessfulPredictiveModels ...7 1. 6.
AValidated(Q)SARoraValidPrediction? ...9 1. 7.
UsinginSilicoTechniques ...9 1. 8. NewAreasforinSilicoModels...11
1. 9. Conclusions...11 References ...11 2
TheUseofQuantumMechanicsDerivedDescriptorsin
ComputationalToxicology...13 Steven J. Enoch 2. 1.
Introduction...13 2. 2. TheSchrodingerEquation...15 2. 3.
Hartree-FockTheory...17 2. 4. Semi-EmpiricalMethods:AM1andRM1...18
2. 5. ABInitio:DensityFunctionalTheory...19 2. 6.
QSARforNon-ReactiveMechanismsofAcute(Aquatic) Toxicity...19 2. 7.
QSARsforReactiveToxicityMechanisms...21 2. 7. 1.
AquaticToxicityandSkinSensitisation...21 2. 7. 2.
QSARsforMutagenicity ...24 2. 8. FutureDirectionsandOutlook...25 2.
9. Conclusions...26 References ...26 vii viii Contents 3
MolecularDescriptors...29 Viviana Consonni and Roberto Todeschini
3. 1. Introduction...29 3. 1. 1. De nitions...29 3. 1. 2.
History...31 3. 1. 3. Theoreticalvs. ExperimentalDescriptors...33
3. 2. MolecularRepresentation ...35 3. 3. TopologicalIndexes...38
3. 3. 1. MolecularGraphs...38 3. 3. 2. De
nitionandCalculationofTopologicalIndexes(TIs) 39 3. 3. 3.
Graph-TheoreticalMatrixes...42 3. 3. 4. ConnectivityIndexes ...48
3. 3. 5. CharacteristicPolynomial ...50 3. 3. 6. SpectralIndexes
...53 3. 4. AutocorrelationDescriptors ...
The development of computational methods that support human health
and environmental risk assessment of engineered nanomaterials
(ENMs) has attracted great interest because the application of
these methods enables us to fill existing experimental data gaps.
However, considering the high degree of complexity and
multifunctionality of ENMs, computational methods originally
developed for regular chemicals cannot always be applied explicitly
in nanotoxicology. This book discusses the current state of the art
and future needs in the development of computational modeling
techniques for nanotoxicology. It focuses on (i) computational
chemistry (quantum mechanics, semi-empirical methods, density
functional theory, molecular mechanics, molecular dynamics), (ii)
nanochemoinformatic methods (quantitative structure-activity
relationship modeling, grouping, read-across), and (iii)
nanobioinformatic methods (genomics, transcriptomics, proteomics,
metabolomics). It reviews methods of calculating molecular
descriptors sufficient to characterize the structure of
nanoparticles, specifies recent trends in the validation of
computational methods, and discusses ways to cope with the
uncertainty of predictions. In addition, it highlights the status
quo and further challenges in the application of computational
methods in regulation (e.g., REACH, OECD) and in industry for
product development and optimization and the future directions for
increasing acceptance of computational modeling for nanotoxicology.
|
You may like...
Loot
Nadine Gordimer
Paperback
(2)
R205
R168
Discovery Miles 1 680
|