Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
Integrating macroscopic properties with observations at lower levels, this book details advances in multiscale modelling and analysis pertaining to classes of composites which either have a wider range of relevant microstructural scales, such as metals, or do not have a very well-defined microstructure, e.g. cementitious or ceramic composites. The IUTAM symposia proceedings provide a platform for extensive further discussion and research.
Composite materials are heterogeneous by nature, and are intended to be, since only the combination of different constituent materials can give them the desired combination of low weight, stiffness and strength. At present, the knowledge has advanced to a level that materials can be tailored to exhibit certain, required properties. At the same time, the fact that these materials are composed of various, sometimes very different constituents, make their mechanical behaviour complex. This observation holds with respect to the deformation behaviour, but especially with respect to the failure behaviour, where complicated and unconventional failure modes have been observed. It is a challenge to develop predictive methods that can capture this complex mechanical behaviour, either using analytical tools, or using numerical me- ods, the ?nite element method being the most widespread among the latter. In this respect, developments have gone fast over the past decade. Indeed, we have seen a paradigm shift in computational approaches to (composite) ma- rial behaviour. Where only a decade ago it was still customary to carry out analyses of deformation and failure at a macroscopic level of observation only - one may call this a phenomenological approach - nowadays this approach is being progressively replaced by multiscale methods. In such methods it is r- ognized a priori that the overall behaviour is highly dependent on local details and ?aws.
Integrating macroscopic properties with observations at lower levels, this book details advances in multiscale modelling and analysis pertaining to classes of composites which either have a wider range of relevant microstructural scales, such as metals, or do not have a very well-defined microstructure, e.g. cementitious or ceramic composites. The IUTAM symposia proceedings provide a platform for extensive further discussion and research.
Composite materials are heterogeneous by nature, and are intended to be, since only the combination of different constituent materials can give them the desired combination of low weight, stiffness and strength. At present, the knowledge has advanced to a level that materials can be tailored to exhibit certain, required properties. At the same time, the fact that these materials are composed of various, sometimes very different constituents, make their mechanical behaviour complex. This observation holds with respect to the deformation behaviour, but especially with respect to the failure behaviour, where complicated and unconventional failure modes have been observed. It is a challenge to develop predictive methods that can capture this complex mechanical behaviour, either using analytical tools, or using numerical me- ods, the ?nite element method being the most widespread among the latter. In this respect, developments have gone fast over the past decade. Indeed, we have seen a paradigm shift in computational approaches to (composite) ma- rial behaviour. Where only a decade ago it was still customary to carry out analyses of deformation and failure at a macroscopic level of observation only - one may call this a phenomenological approach - nowadays this approach is being progressively replaced by multiscale methods. In such methods it is r- ognized a priori that the overall behaviour is highly dependent on local details and ?aws.
This book discusses complex loadings of turbine blades and protective layer Thermal Barrier Coating (TBC), under real working airplane jet conditions. They obey both multi-axial mechanical loading and sudden temperature variation during starting and landing of the airplanes. In particular, two types of blades are analyzed: stationary and rotating, which are widely applied in turbine engines produced by airplane factories.
This short book describes the basic technological aspects involved in the creation of purely clinch and clinch-adhesive joints made of different types of adherent materials and employing different joining technologies. Basic parameters that need to be taken into account in the design process are also presented, while a comparison of experimental testing of the hybrid joint with simple clinching for a combination of different joining materials underlines the advantages of opting for hybrid joints. The book's conclusions will facilitate the practical application of this new fastening technology.
Various types of composites are used in engineering practice. The most important are fibrous compositesy laminates and materials with a more complicated geometry of reinforcement in the form of short fibres and particles of various properties DEGREES shapes and sizes. The aim of course was to understand the basic principles of damage growth and fracture processes in ceramic, polymer and metal matrix composites. Nowadays, it is widely recognized that important macroscopic properties like the macroscopic stiffness and strength, are governed by processes that occur at one to several scales below the level of observation. Understanding how these processes infiuence the reduction of stiffness and strength is essential for the analysis of existing and the design of improved composite materials. The study of how these various length scales can be linked together or taken into account simultaneously is particular attractive for composite materials, since they have a well-defined structure at the micro and meso-levels. Moreover, the microstructural and mesostructural levels are well-defined: the microstructural level can be associated with small particles or fibres, while the individual laminae can be indentified at the mesoscopic level. For this reason, advances in multiscale modelling and analysis made here, pertain directly to classes of materials which either have a range of relevant microstructural scales, such as metals, or do not have a very we- defined microstructure, e.g. cementitious composites. In particular, the fracture mechanics and optimization techniques for the design of polymer composite laminates against the delamination type of failure was dis
The papers in this volume deal with materials science, theoretical mechanics and experimental and computational techniques at multiple scales, providing a sound base and a framework for many applications which are hitherto treated in a phenomenological sense. The basic principles are formulated of multiscale modeling strategies towards modern complex multiphase materials subjected to various types of mechanical, thermal loadings and environmental effects. The focus is on problems where mechanics is highly coupled with other concurrent physical phenomena. Attention is also focused on the historical origins of multiscale modeling and foundations of continuum mechanics currently adopted to model non-classical continua with substructure, for which internal length scales play a crucial role.
|
You may like...
The White Queen - The Complete Series
Rebecca Ferguson, Amanda Hale, …
Blu-ray disc
(4)
|