![]() |
![]() |
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
Increases in computer power have now enabled engineers to combine materials science with structural mechanics in the design and the assessment of concrete structures. The techniques developed have become especially useful for the performance assessment of such structures under coupled mechanistic and environmental actions. This allows effective management of infrastructure over a much longer life cycle, thus satisfying the requirements for durability and sustainability. This ground-breaking new book draws on the fields of materials and structural mechanics in an integrated way to address the questions of management and maintenance. It proposes a realistic way of simulating both constituent materials and structural responses under external loading and under ambient conditions. Where the research literature discusses component or element technology related to performance assessment, this book uniquely covers the subject at the level of the whole system including soil foundation, showing engineers how to model changes in concrete structures over time and how to use this for decision making in infrastructure maintenance and asset management.
Increases in computer power have now enabled engineers to
combine materials science with structural mechanics in the design
and the assessment of concrete structures. The techniques developed
have become especially useful for the performance assessment of
such structures under coupled mechanistic and environmental
actions. This allows effective management of infrastructure over a
much longer life cycle, thus satisfying the requirements for
durability and sustainability.
This ground-breaking new book draws on the fields of materials and structural mechanics in an integrated way to address the questions of management and maintenance. It proposes a realistic way of simulating both constituent materials and structural responses under external loading and under ambient conditions. Where the research literature discusses component or element technology related to performance assessment, this book uniquely covers the subject at the level of the whole system including soil foundation, showing engineers how to model changes in concrete structures over time and how to use this for decision making in infrastructure maintenance and asset management.
The intial defects induced at early age of concrete hardening: thermal strains, shrinkage, creep and the associated risks of cracking are one of the governing factors for long-term performance of concrete. Proposing a simplified but intergrated scenario of concrete life cycle simulation method, this book examines and explains the vast amount of experimental observations related to hardening concrete using a common set of physical laws. The methods used focus on the three primary processes common to the development of all cementitious materials: hydration, moisture transport and structure formation. The authors describe an intergrated theoretical and computational platform from which to examine and assess the quality and structural durability of concrete at an early age. This represents a new approach to the problem of evaluating durability performance and presents a practical methodology for researchers and practitioners in the field of concrete technology. The proposed scheme may be used in practical computational simulation methods, with the relevant software available on the Internet, and is a valuable guide to those engaged in concrete design.
|
![]() ![]() You may like...
|