![]() |
![]() |
Your cart is empty |
||
Showing 1 - 25 of 66 matches in All Departments
Electrochemistry and Photo-electrochemistry at the Nanoscale explores how nanotechnology and nanomaterials can be utilized in the field of electrochemistry and photo-electrochemistry. Fundamentals of nanoscale electrochemistry and photo-electrochemistry f
Smart ceramic coatings containing multifunctional components are now finding application in transportation and automotive industries, in electronics, and energy, sectors, in aerospace and defense, and in industrial goods and healthcare. Their wide application and stability in harsh environments are only possible due to the stability of the inorganic components that are used in ceramic coatings. Ceramic coatings are typically silicon nitride, chromia, hafnia, alumina, alumina-magnesia, silica, silicon carbide, titania, and zirconia-based compositions. The increased demand for these materials and their application in energy, transportation, and the automotive industry, are considered, to be the main drivers. Advanced Ceramic Coatings for Energy Applications covers recent developments in conducting electrodes, photovoltaics, solar cells, battery applications, fuel cells, electrocatalysts, photocatalysts and supercapacitors. The book is one of four volumes that together provide a comprehensive resource in the field of Advanced Ceramic Coatings, also including titles covering: fundamentals, manufacturing, and classification; biomedical applications; and emerging applications. The books will be extremely useful for academic and industrial researchers and practicing engineers who need to find reliable and up-to-date information about recent progresses and new developments in the field of advanced ceramic coatings. It will also be of value to early career scientists providing background knowledge to the field.
Nanotechnology for Oil-Water Separation: From Fundamentals to Industrial Applications explores how nanotechnologically engineered solutions (modified meshes, carbon nanotubes, functionalized fabrics, textile or hybrid elements for bio-membranes, nanofibrous materials, and many more) can be used to remediate current damage to the environment for a better tomorrow. Design and fabrication of low-cost, effective and environmentally friendly micro/nanomaterials exhibiting strong wettability properties and mechanical and chemical stability are examined, along with current research developments and possible future directions, making this book an essential read for researchers, advanced students, and industry professionals with an interest in nanotechnology and sustainable (bio)technologies. The increasing amounts of industrial substances released by petrochemical, steel or gas-generating plants and food-processing factories into water poses an ever more serious environmental threat. Due to the significant adverse impact on the natural ecosystem, aquatic organisms and human health, the scientific community has made its priority to find sustainable methods to separate oil-water mixtures.
Handbook of Advanced Ceramic Coatings: Fundamentals, Manufacturing and Classification introduces ceramic coating materials, methods of fabrication, characterizations, the interaction between fillers, reinforcers, and environmental impact, and the functional classification of ceramic coatings. The book is one of four volumes that together provide a comprehensive resource in the field of Advanced Ceramic Coatings, also including titles covering energy, biomedical and emerging applications. These books will be extremely useful for academic and industrial researchers and practicing engineers who need to find reliable and up-to-date information about recent progresses and new developments in the field of advanced ceramic coatings. Smart ceramic coatings containing multifunctional components are now finding application in transportation and automotive industries, in electronics, and energy sectors, in aerospace and defense, and in industrial goods and healthcare. Their wide application and stability in harsh environments are only possible due to the stability of the inorganic components used. Ceramic coatings are typically silicon nitride, chromia, hafnia, alumina, alumina-magnesia, silica, silicon carbide, titania, and zirconia-based compositions. The increased demand for these materials and their application in energy, transportation, and the automotive industry, are considered, to be the main drivers.
Advances in Nanotechnology for Marine Antifouling surveys the latest research in the application of nanotechnology for biofouling inhibition. The book gathers in-depth information on the various micro and nano-techniques, nanocoatings, polymeric composites paints, methods of application and prevention mechanisms. This is a valuable resource for researchers and advanced students across anti-biofouling, nanotechnology, nanomaterials, polymer nanocomposites, coatings, maritime technology, chemistry, chemical engineering, environmental science, and materials science and engineering. This is also essential reading for industrial scientists, engineers, R&D, and other professionals with an interest in the use of nanotechnology for antifouling, particularly in the maritime sector. Nanotechnologies have been recognized as a powerful tool in antifouling strategies with nanocoatings with efficient properties enabling increased durability and performance in the prevention of biofouling and corrosion while replacing potentially more harmful chemicals.
Nanomaterials for Bioreactors and Bioprocessing Applications explores the potential of nanomaterials in improving the efficiency of bioprocessing industries and next-generation bioreactors. The book provides information on various newly synthesized nanomaterials in bioreactors for scaling up the bioprocess to an industrial level, the criteria and properties of nanomaterials to be used in bioprocessing, advantages, challenges while using the nanomaterials, and the economic constraints. In addition, the book also discusses the fate of various nanomaterials in the bioprocess, the chances of product contamination and its prevention. This book is an important reference source for materials scientists and biomedical engineers information on the synthesized nanomaterials that are available for bioreactors and bioprocesses, and the various optimized conditions and precautions to be taken.
Nanotechnology for Advanced Biofuels: Fundamentals and Applications highlights emerging techniques for the formulation of fuels using nanotechnology and bio-based concepts. The addition of high-energy nanoparticles and biologically derived molecules in liquid fuel can increase the potential of energy-rich compounds. Key challenges in the production of nanotechnology-based fuels and their combustion or ignition during the operation are covered, along with the emission of oxidized particles and by-products of incomplete combustion and nano-fuels as an emerging field. The bio-based energy-rich fuels are largely diffused in conventionally used fuels. The addition of biofuels and nano-additives to pre-existing fuels can offer opportunities for developing modified fuels in domestic industries with the maximum usage of renewable biomass. This is an important reference source for materials scientists, energy scientists and chemical engineers who want to understand more about how nanotechnology can help create more efficient biofuels.
Antiviral and Antimicrobial Smart Coatings: Fundamentals and Applications provides a critical analysis of all types of smart antiviral and antimicrobial coatings currently being researched. The book opens with a discussion of the microbial and viral pathogens, including how to identify them and their interaction with surfaces. The next three sections look at the concept of smart coatings, specifically antibacterial, antifungal, and antiviral smart coatings, types, effects, and applications. The book concludes by discussing the methods and standards for characterization of coatings and then presents several real world case studies. A valuable resource for those working in the smart coatings field.
Nanotechnology-Based E-Noses: Fundamentals and Emerging Applications reviews advances in nanomaterials and their modification for use in e-sensors. Theoretical understanding of nanomaterials and technologies for improving sensors with better detection limits are covered, as are the most relevant nanomaterials, their synthesis strategies and the relationship between properties and device performance. Current state-of-the-art progress in nanotechnology device fabrication, along with directions for future applications and challenges are also discussed. This book will be an ideal resource for materials scientists, engineers, chemists, researchers in academia and R&D in industry. Recently, "e-noses" or "electronic sensors" are emerging as advanced technologies for the fast detection of chemicals, gases and explosives. The concept behind the "e-nose" is similar to the capability of humans and dogs in detecting materials based on odors. Nanomaterials can be used for e-nose technologies but their properties must be modified to make them effective sensors. The sensing capability and performance these materials depend on several factors such as morphology, dopants, micro-additives, design of sensors, phase and structure of the nanomaterials.
Smart Multifunctional Nano-inks: Fundamentals and Emerging Applications covers nano-inks and how they can be used in inkjet printers for printing complex circuitry on flexible substrates or as a paste for 3D printers. Microstructures can be 3D-printed using nano-inks in a combination of high-resolution plasma printing and subsequent rotogravure printing. In addition, smart multifunctional nano-inks are not only required for the electronic, but also in other applications, such as for secure inks, for currency, and in immigration documents. This book focuses on fundamental design concepts, promising applications, and future challenges of nano-inks in various areas, such as optoelectronics, energy, security and biomedical fields. The current challenge for the successful industrial application of nano-inks is in the preparation of a stable dispersion of advanced materials for nano-inks. The functionalization, synthesizing, and theoretical modeling provide the solution for most of the current issues, but there are still remaining challenges which are covered in this comprehensive resource.
Smart Polymer Nanocomposites: Design, Synthesis, Functionalization, Properties, and Applications brings together the latest research on synthetic methods and surface functionalization of polymers and polymer composites for advanced applications. Sections cover the basic principles of advanced polymer nanocomposites, including morphology, materials, characterization, and copolymerization, provide in-depth coverage of synthetic methods, facilitating the preparation of polymeric nanoparticles with the required properties, examine the morphologies of polymer nanocomposites and stimuli-responsive surfaces, and focus on cutting-edge approaches to tailoring polymeric nanocomposites according to the requirements. The book's final chapters focus on smart polymer nanocomposites for specific advanced applications, including high-temperature environments, bone tissue regeneration, biomedicine, wastewater treatment, dielectric and energy storage, chiral separation, food packaging, sensing, and drug delivery. This is a valuable resource for researchers and advanced students in polymer science, composite science, nanotechnology, and materials science, as well as those approaching the area from a range of other disciplines, including industry R&D.
Smart Nanomaterials for Bioencapsulation focuses on the fundamentals, synthesis methods and matrix design for the encapsulation of drugs, drug release, food and nutraceuticals, mechanisms of nano- encapsulated drugs on liposomes, micelles, silica composites, carbon nanotubes, dendrimers, and protein inorganic nanohybrids. Providing detailed information on the encapsulation of food and drug derivatives, the book helps create new and modern approaches for both pharmaceutical and nutritional science. The target delivery of pharmacological agents, as well as food additives under various conditions is covered, including sections on systemic release of drug molecules, minimum loss at non-target sites, the accumulation of diseased tissue or organs, and more. Smart nanomaterial-based nanocarriers protect the loaded molecules from premature degradation in the biological environment and enhance bioavailability for cellular uptake. The tuned properties of smart nanomaterials, such as porosity, pore-volume, surface area-to-volume ratio, coating with inert and labile materials, and more help determine the in vivo performance of the bioencapsulated food and drug derivatives.
Plasma technology can facilitate the fabrication of nanomaterials and nanoscale structures. On the other hand, nanotechnology could be possibly used in plasma science. Several advanced nanomaterials and nanodevices could be used to fabricate nanoplasma (nanoscale plasma), such as nanoelectrodes, nanoantennae, nanolasers, nanoreactors, nanomagnets, nanosensors, nanobatteries, nanogenerator and supercapacitors. This book provides information on fundamental design concepts and promising applications of nanoplasma. It explains how, for the next generation of electronic devices with high data rate communications, a high-speed operation of electronic switches could be attained using nanoplasma. Similarly, in the field of heath and aesthetics, nanoplasma can be used as a non-surgical localized treatments for the face and neck, such as eyelid correction. In addition, various kinds of advanced nanostructures can be fabricated using the plasma technology
Nano-biosorbents for Decontamination of Water, Air, and Soil Pollution explores the properties of nanobiosorbents and their applications in the removal of contaminants from the natural environment. The use of nanobiosorbents for environmental protection is a combinational approach that incorporates nanotechnology with naturally occurring biopolymers that form an amalgamation of nano-biopolymers used as sorbent materials in the removal of a variety of contaminants from wastewaters. This is an important reference source for materials scientists, bioscientists and environmental scientists who are looking to understand how nanobiosorbents are being used for a range of environmental applications.
Nanotechnology-Based Smart Remote Sensing Networks for Disaster Prevention outlines how nanotechnology and space technology could be applied for the detection of disaster risks in early stages, using cheap sensors, cheap constellations of low Earth orbit (LEO) satellites, and smart wireless networks with artificial intelligence (AI) tools. Nanomaterial-based sensors (nanosensors) can offer several advantages over their micro-counterparts, such as lower power or self-powered consumption, high sensitivity, lower concentration of analytes, and smaller interaction distances between the object and the sensor. Besides this, with the support of AI tools, such as fuzzy logic, genetic algorithms, neural networks, and ambient intelligence, sensor systems are becoming smarter when a large number of sensors are used. This book is an important reference source for materials scientists, engineers, and environmental scientists who are seeking to understand how nanotechnology-based solutions can help mitigate natural disasters.
Hybrid and Combined Processes for Air Pollution Control: Methodologies, Mechanisms and Effect of Key Parameters provides an exhaustive inventory of hybrid and combined processes in the field of air treatment. The book covers principles, the effect of key parameters, technologies and reactors of the processes and their implementation, from lab-scale to industrial scale, also identifying future trends. Sections discuss effects on the environment and living beings, identify novel techniques and innovations, and offer a thorough assessment of the strengths and weaknesses of each. In this well-structured book, chapters are linked to the type of treatment, with a significant part dealing with treatment by transfer processes: (absorption and absorption) and on destruction treatments, such as advanced oxidation processes.
Metal-Organic Framework-Based Nanomaterials for Energy Conversion and Storage addresses current challenges and covers design and fabrication approaches for nanomaterials based on metal organic frameworks for energy generation and storage technologies. The effect of synthetic diversity, functionalization, ways of improving conductivity and electronic transportation, tuning-in porosity to accommodate various types of electrolyte, and the criteria to achieve the appropriate pore size, shape and surface group of different metal sites and ligands are explored. The effect of integration of other elements, such as second metals or hetero-atomic doping in the system, to improve catalytic activity and durability, are also covered. This is an important reference source for materials scientists, engineers and energy scientists looking to further their understanding on how metal organic framework-based nanomaterials are being used to create more efficient energy conversion and storage systems.
Nanotechnology in the Automotive Industry explores how nanotechnology and nanomaterials are used to enhance the performance of materials and devices for automotive application by fabricating nano-alloys, nanocomposites, nano coatings, nanodevices, nanocatalysts and nanosensors. Consisting of 36 chapters in 6 parts, this new volume in the Micro and Nano Technologies series is for materials scientists, nanotechnologists and automotive engineers working with nanotechnology and nanomaterials for automotive applications. Nanotechnology is seen as one of the core technologies for the future automotive industry to sustain competitiveness. The benefits that nanotechnology brings to the automotive sector include stronger and lighter materials for increased safety and reduced fuel consumption, improved engine performance and fuel consumption for gasoline powered vehicles due to nanocatalysts, fuel additives and lubricants, and more.
Nanotechnology in Fuel Cells focuses on the use of nanotechnology in macroscopic and nanosized fuel cells to enhance their performance and lifespan. The book covers the fundamental design concepts and promising applications of nanotechnology-enhanced fuel cells and their advantages over traditional fuel cells in portable devices, including longer shelf life and lower cost. In the case of proton-exchange membrane fuel cells (PEMFCs), nano-membranes could provide 100 times higher conductivity of hydrogen ions in low humidity conditions than traditional membranes. For hydrogen fuel cell, nanocatalysts (Pt hybrid nanoparticles) could provide 12 times higher catalytic activity. This is an important reference source for materials scientists and engineers who are looking to understand how nanotechnology is being used to create more efficient macro- and nanosized fuel cells.
Nanomaterials for Electrocatalysis provides an overview of the different types of nanomaterials, design principles and synthesis protocols used for electrocatalytic reactions. The book is divided into four parts that thoroughly describe basic principles and fundamental of electrocatalysis, different types of nanomaterials used, and their electrocatalytic applications, limitations and future perspectives. As electrochemical systems containing nanomaterials, with relevance to experimental situation, yield better results, this book highlights new information and findings.
Nanotechnology in Paper and Wood Engineering: Fundamentals, Challenges and Applications describes recent advances made in the use of nanotechnology in the paper and pulp industry. Various types of nano-additives commonly used in the paper industry for modification of raw material to enhance final products are included, with other sections covering the imaging applications of nano-papers and nano-woods in pharmaceuticals, biocatalysis, photocatalysis and energy storage. This book is an important reference source for materials scientists and engineers who are looking to understand how nanotechnology is being used to create more efficient manufacturing processes in for the paper and wood industries.
Lithium-Sulfur Batteries: Materials, Challenges, and Applications presents the advantages of lithium-sulfur batteries, such as high theoretical capacity, low cost, and stability, while also addressing some of the existing challenges. Some of the challenges are low electrical conductivity, the possible reaction of sulfur with lithium to form a soluble lithium salt, the formation of the dendrimer, large volume variation of cathode materials during the electrochemical reaction, and shuttle behavior of highly soluble intermediate polysulfides in the electrolyte. This book provides some possible solutions to these issues through novel architecture, using composite materials, doping to improve low conductivity, etc., as well as emphasizing novel materials, architectural concepts, and methods to improve the performance of lithium-sulfur batteries.
Nanosensors for Smart Agriculture covers new breakthroughs in smart agriculture, highlighting new technologies, such as the internet of things, big data and artificial intelligence. In addition, the book provides the many advantages of nanosensors over their micro counterparts, such as lower power consumption, higher sensitivity, lower concentration of analytes, and smaller interaction distances between the object and sensor. Sections provide information on fundamental design concepts and emerging applications of nanosensors in smart agriculture. The book highlights how, when cultivating soil, nanosensors and their wireless networks can be used for soil quality monitoring (moisture/herbicides/organic compound/trace metals monitoring in soil, etc. Other applications cover how smart nanosensors can be used for virus detection and hygiene/pathogen controls in livestocks, their use as active transport tracking devices for smart tracking and tracing, and other various applications, such as (i) nanochips for identity (radio frequency identification), (ii) food inspection, (iii) intelligent food packaging, and (iv) smart storage. This is an important reference source for materials scientists and agricultural engineers who are looking to understand more about how nanosensor technology can be used to create more efficient and sustainable agricultural systems.
Nano-Bioremediation: Fundamentals and Applications explores how nano-bioremediation is used to remedy environmental pollutants. The book's chapters focus on the design, fabrication and application of advanced nanomaterials and their integration with biotechnological processes for the monitoring and treatment of pollutants in environmental matrices. It is an important reference source for materials scientists, engineers and environmental scientists who are looking to increase their understanding of bioremediation at the nanoscale. The mitigation of environmental pollution is the biggest challenge to researchers and the scientific community, hence this book provides answers to some important questions. As an advanced hybrid technology, nano-bioremediation refers to the integration of nanomaterials and bioremediation for the remediation of pollutants. The rapid pace of urbanization, massive development of industrial sectors, and modern agricultural practices all cause a controlled or uncontrolled release of environmentally-related hazardous contaminants that are seriously threatening every key sphere, including the atmosphere, hydrosphere, biosphere, lithosphere, and anthroposphere.
Nanomaterial Recycling provides an update on the many benefits nanomaterials can provide on both environmental and economic issues. Sections cover the appropriate recycling strategies of nanowastes, nanowaste regulations (including nanowaste disposal and recycling standards), promising applications (reuses) of these recycled nanomaterials, and various methods used for the separation of nanoparticles, including (i) centrifugation, (ii)solvent evaporation, (iii) magnetic separation, (iv) using pH/thermal responsive materials, (v) molecular antisolvents, (vi) nanostructured colloidal solvents, and more. This book is an important reference source for materials scientists and engineers who are seeking to increase their understanding of nanomaterials, recycling processes and techniques. As nanomaterials can be recycled from both new/pure products (from nano manufacturing) and used products (nano waste: waste from nano integrated products), this book is a welcomed addition to many disciplines. |
![]() ![]() You may like...
Hit List - An In-Depth Investigation…
Richard Belzer, David Wayne
Paperback
R433
Discovery Miles 4 330
Cornetto Trilogy - The World's End / Hot…
Simon Pegg, Nick Frost, …
Blu-ray disc
![]() R263 Discovery Miles 2 630
|