Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
The purpose of this book is to present a comprehensive account of the different definitions of stochastic integration for fBm, and to give applications of the resulting theory. Particular emphasis is placed on studying the relations between the different approaches. Readers are assumed to be familiar with probability theory and stochastic analysis, although the mathematical techniques used in the book are thoroughly exposed and some of the necessary prerequisites, such as classical white noise theory and fractional calculus, are recalled in the appendices. This book will be a valuable reference for graduate students and researchers in mathematics, biology, meteorology, physics, engineering and finance.
Kiyosi Ito, the founder of stochastic calculus, is one of the few central figures of the twentieth century mathematics who reshaped the mathematical world. Today stochastic calculus is a central research field with applications in several other mathematical disciplines, for example physics, engineering, biology, economics and finance. The Abel Symposium 2005 was organized as a tribute to the work of Kiyosi Ito on the occasion of his 90th birthday. Distinguished researchers from all over the world were invited to present the newest developments within the exciting and fast growing field of stochastic analysis. The present volume combines both papers from the invited speakers and contributions by the presenting lecturers. A special feature is the Memoirs that Kiyoshi Ito wrote for this occasion. These are valuable pages for both young and established researchers in the field.
This book is based on research that, to a large extent, started around 1990, when a research project on fluid flow in stochastic reservoirs was initiated by a group including some of us with the support of VISTA, a research coopera tion between the Norwegian Academy of Science and Letters and Den norske stats oljeselskap A.S. (Statoil). The purpose of the project was to use stochastic partial differential equations (SPDEs) to describe the flow of fluid in a medium where some of the parameters, e.g., the permeability, were stochastic or "noisy." We soon realized that the theory of SPDEs at the time was insufficient to handle such equations. Therefore it became our aim to develop a new mathematically rigorous theory that satisfied the following conditions. 1) The theory should be physically meaningful and realistic, and the corre sponding solutions should make sense physically and should be useful in applications. 2) The theory should be general enough to handle many of the interesting SPDEs that occur in reservoir theory and related areas. 3) The theory should be strong and efficient enough to allow us to solve th, se SPDEs explicitly, or at least provide algorithms or approximations for the solutions."
This book is based on research that, to a large extent, started around 1990, when a research project on fluid flow in stochastic reservoirs was initiated by a group including some of us with the support of VISTA, a research coopera tion between the Norwegian Academy of Science and Letters and Den norske stats oljeselskap A.S. (Statoil). The purpose of the project was to use stochastic partial differential equations (SPDEs) to describe the flow of fluid in a medium where some of the parameters, e.g., the permeability, were stochastic or "noisy." We soon realized that the theory of SPDEs at the time was insufficient to handle such equations. Therefore it became our aim to develop a new mathematically rigorous theory that satisfied the following conditions. 1) The theory should be physically meaningful and realistic, and the corre sponding solutions should make sense physically and should be useful in applications. 2) The theory should be general enough to handle many of the interesting SPDEs that occur in reservoir theory and related areas. 3) The theory should be strong and efficient enough to allow us to solve th, se SPDEs explicitly, or at least provide algorithms or approximations for the solutions."
The purpose of this book is to present a comprehensive account of the different definitions of stochastic integration for fBm, and to give applications of the resulting theory. Particular emphasis is placed on studying the relations between the different approaches. Readers are assumed to be familiar with probability theory and stochastic analysis, although the mathematical techniques used in the book are thoroughly exposed and some of the necessary prerequisites, such as classical white noise theory and fractional calculus, are recalled in the appendices. This book will be a valuable reference for graduate students and researchers in mathematics, biology, meteorology, physics, engineering and finance.
The first edition of Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach, gave a comprehensive introduction to SPDEs. In this, the second edition, the authors build on the theory of SPDEs driven by space-time Brownian motion, or more generally, space-time L vy process noise. Applications of the theory are emphasized throughout. The stochastic pressure equation for fluid flow in porous media is treated, as are applications to finance. Graduate students in pure and applied mathematics as well as researchers in SPDEs, physics, and engineering will find this introduction indispensible. Useful exercises are collected at the end of each chapter.
|
You may like...
|