Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
The physics of metal forming and metal removing is normally expressed using non-linear partial differential equations which can be solved using the finite element method (FEM). However, when the process parameters are uncertain and/or the physics of the process is not well understood, soft computing techniques can be used with FEM or alone to model the process. Using FEM, fuzzy set theory and neural networks as modeling tools; Modeling of Metal Forming and Machining Processes provides a complete treatment of metal forming and machining, and includes: a [ an explanation of FEM and its application to the modeling of manufacturing processes; a [ a discussion of the numerical difficulties of FEM; a [ chapters on the application of soft computing techniques in this modeling process. The algorithms and solved examples included make Modeling of Metal Forming and Machining Processes of value to postgraduates, senior undergraduates, lecturers and researchers in these fields. R&D engineers and consultants for the manufacturing industry will also find it of use.
This book presents the select proceedings of the International Conference on Recent Advancements in Mechanical Engineering (ICRAME 2020). It provides a comprehensive overview of the various technical challenges faced, their systematic investigation, contemporary developments, and future perspectives in the domain of mechanical engineering. The book covers a wide array of topics including fluid flow techniques, compressible flows, waste management and waste disposal, bio-fuels, renewable energy, cryogenic applications, computing in applied mechanics, product design, dynamics and control of structures, fracture and failure mechanics, solid mechanics, finite element analysis, tribology, nano-mechanics and MEMS, robotics, supply chain management and logistics, intelligent manufacturing system, rapid prototyping and reverse engineering, quality control and reliability, conventional and non-conventional machining, and ergonomics. This book can be useful for students and researchers interested in mechanical engineering and its allied fields.
Explores the Principles of Plasticity Most undergraduate programs lack an undergraduate plasticity theory course, and many graduate programs in design and manufacturing lack a course on plasticity-leaving a number of engineering students without adequate information on the subject. Emphasizing stresses generated in the material and its effect, Plasticity: Fundamentals and Applications effectively addresses this need. This book fills a void by introducing the basic fundamentals of solid mechanics of deformable bodies. It provides a thorough understanding of plasticity theory, introduces the concepts of plasticity, and discusses relevant applications. Studies the Effects of Forces and Motions on Solids The authors make a point of highlighting the importance of plastic deformation, and also discuss the concepts of elasticity (for a clear understanding of plasticity, the elasticity theory must also be understood). In addition, they present information on updated Lagrangian and Eulerian formulations for the modeling of metal forming and machining. Topics covered include: Stress Strain Constitutive relations Fracture Anisotropy Contact problems Plasticity: Fundamentals and Applications enables students to understand the basic fundamentals of plasticity theory, effectively use commercial finite-element (FE) software, and eventually develop their own code. It also provides suitable reference material for mechanical/civil/aerospace engineers, material processing engineers, applied mechanics researchers, mathematicians, and other industry professionals.
This book presents the select proceedings of the International Conference on Recent Advancements in Mechanical Engineering (ICRAME 2020). It provides a comprehensive overview of the various technical challenges faced, their systematic investigation, contemporary developments, and future perspectives in the domain of mechanical engineering. The book covers a wide array of topics including fluid flow techniques, compressible flows, waste management and waste disposal, bio-fuels, renewable energy, cryogenic applications, computing in applied mechanics, product design, dynamics and control of structures, fracture and failure mechanics, solid mechanics, finite element analysis, tribology, nano-mechanics and MEMS, robotics, supply chain management and logistics, intelligent manufacturing system, rapid prototyping and reverse engineering, quality control and reliability, conventional and non-conventional machining, and ergonomics. This book can be useful for students and researchers interested in mechanical engineering and its allied fields.
Written by authorities in the subject, this book provides a complete treatment of metal forming and machining by using the computational techniques FEM, fuzzy set theory and neural networks as modelling tools. The algorithms and solved examples included make this book of value to postgraduates, senior undergraduates, and lecturers and researchers in these fields. Research and development engineers and consultants for the manufacturing industry will also find it of use.
"Environment-Friendly Machining" provides an in-depth overview of environmentally-friendly machining processes, covering numerous different types of machining in order to identify which practice is the most environmentally sustainable. The book discusses three systems at length: machining with minimal cutting fluid, air-cooled machining and dry machining. Also covered is a way to conserve energy during machining processes, along with useful data and detailed descriptions for developing and utilizing the most efficient modern machining tools. Researchers and engineers looking for sustainable machining solutions will find "Environment-Friendly Machining" to be a useful volume.
|
You may like...
|