Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 55 matches in All Departments
With one volume each year, this series keeps scientists and advanced students informed of the latest developments and results in all areas of the plant sciences. The present volume includes reviews on plant physiology, biochemistry, ecology, and ecosystems.
With one volume each year, this series keeps scientists and advanced students informed of the latest developments and results in all areas of the plant sciences. This latest volume includes reviews on plant physiology, biochemistry, genetics and genomics, forests, and ecosystems.
In spite of international agreements at the political level not much has changed since the late 1980s in terms of reducing the speed of destruction of original tropical environments. However, since the publication of the first edition ten years ago, international research efforts in physiological ecology of plants in the tropics has increased enormously in quantity and quality. In some fields advances were more substantial than in others. New approaches came up in remote sensing and at the other end of the scope in some areas molecular biology was particularly developed regarding ecological performance of tropical plants, e.g. in understanding the adaptation of resurrection plants to the extreme habitat of inselbergs. The wealth of new information made it necessary to break large chapters down into smaller ones. Tropical forests which occupy about half of the entire volume of the book were now arranged in 5 chapters covering structure and function under the influence of environmental cues and including epiphytes and mangroves as part of the tropical forest complex. Savannas were now treated in two chapters. Coastal salinas have been combined with a new section on the Brazilian restingas in a chapter on coastal sand plains.
Completing the primary genomic sequence of Arabidopsis thaliana was a major milestone, being the first plant genome and well established as the premiere model species in plant biology. Since working drafts of rice (Oryza sativa L.) genome became available (Yu et al. 2002), it has become the s- ond-best model organism in plants representing monocotyledons. Understanding how the genome sequence comprehensively encodes de- lopmental programs and environmental responses is the next major ch- lenge for all plant genome projects. This requires functional characterization of genes, including identification of regulatory sequences. Several functional genomics approaches were initiated to decode the linear sequence of the model plant Arabidopsis thaliana, including full-length cDNA collections, microarrays, natural variation, knockout collections, and comparative sequence analysis (Borevitz and Ecker 2004). Genomics provides the ess- tial tools to speed up the research work of the traditional molecular gene- cist, and is now a scientific discipline in its own right (Borevitz and Ecker 2004).
With one volume each year, this series keeps scientists and advanced students informed of the latest developments and results in all areas of the plant sciences. The present volume includes reviews on plant physiology, biochemistry, genetics and genomics, forests, and ecosystems.
"The path of carbon in photosynthesis"for Progress in Botany: 50 years of Calvin-Benson cycle - 30 years of Kelly-Latzko reviews While writing this Foreword and trying to focus my thoughts on the bioch- istry of photosynthesis, a handsome slim hardcover booklet of 104 pages bound in dark blue linen is in front of me on my desk: "The Path of Carbon in Photosynthesis" J. A. Bassham and M. Calvin,1957 I acquired it in the month of my oral Ph. D. -exams, April 1960, to get prepared with the Nobel-laureate's text. In 2004 in his last swan-song review for Progress in Botany Grahame J. Kelly celebrated "The Calvin cycle's golden jubilee"in an overview of 50 years of carbon flowing for the progress in botany. He had met Erwin Latzko in 1970 in another then foremost and now historic place of the biochemistry of photosynthesis, the laboratory of Martin Gibbs at Brandeis University, Massachusetts. Four years later Latzko and Kelly (1974) published their first joint review on photosynthetic carbon metabolism, starting off a long flow of articles on the flow of carbon in the series Progress in Botany. Most faithfully they produced regular accounts of the progress in Progress in Botany every second year, and when Erwin Latzko decided to retire after the 1996 review Grahame Kelly carried on alone.
With one volume each year, this series keeps scientists and advanced students informed of the latest developments and results in all areas of the plant sciences. This latest volume includes reviews on plant physiology, biochemistry, genetics and genomics, forests, and ecosystems.
With one volume each year, this series keeps scientists and advanced students informed of the latest developments and results in all areas of the plant sciences. The present volume includes reviews on genetics, cell biology, physiology, comparative morphology, systematics, ecology, and vegetation science.
This book focuses on modules and emergence with self-organization in the life sciences. As Aristotle observed so long ago, the whole is more than the sum of its parts. However, contemporary science is dominated by reductionist concepts and tends to neglect the non-reproducible features of complex systems, which emerge from the interaction of the smaller units they are composed of. The book is divided into three major parts; the essays in part A highlight the conceptual basis of emergence, linking it to the philosophy of science, systems biology and sustainability. This is subsequently exemplified in part B by applying the concept of emergence to various biological disciplines, such as genetics, developmental biology, neurobiology, plant physiology and ecology. New aspects of emergence come into play when biology meets the technical sciences, as revealed in a chapter on bionics. In turn, part C adopts a broader view, revealing how the organization of life follows a hierarchical order in terms of scalar dimensions, ranging from the molecular level to the entire biosphere. The idea that life is primarily and exclusively shaped by processes at the molecular level (and, in particular, by the information encoded in the genome) is refuted; rather, there is no hierarchy with respect to the level of causation in the cross-talk between the levels. In the last two chapters, the evolutionary trend toward ever-increasing complexity in living systems is interpreted in terms of the Gaia hypothesis sensu Lovelock: the entire biosphere is viewed as a functional unit (or 'holobiont-like system') organized to develop and sustain life on Earth.
With one volume each year, this series keeps scientists and
advanced students informed of the latest developments and results
in all areas of the plant sciences.
With one volume each year, this series keeps scientists and advanced students informed of the latest developments and results in all areas of the plant sciences. The present volume includes reviews on genetics, cell biology, physiology, comparative morphology, systematics, ecology, and vegetation science.
With one volume published each year, this series keeps scientists and students current with the latest developments and results in all areas of the plant sciences. This present volume includes insightful reviews covering genetics, cell biology, physiology, comparative morphology, systematics, ecology, and vegetation science.
With one volume each year, this series keeps scientists and advanced students informed of the latest developments and results in all areas of the plant sciences.
Clusia is the only dicotyledonous tree genus with crassulacean acid metabolism (CAM), and in some cases all variants of CAM can be expressed in one given species. These unique features as well as Clusia's extreme flexibility have put it in the limelight of international research. The studies presented in this volume embrace anatomy, morphology and plant architecture, phytogeographical distribution and community ecology, phylogeny and genetic diversity, physiology and metabolism, physiological ecology and functional diversity, circadian rhythmicity and biological timing. Covering all aspects of tree biology, this richly illustrated volume is an invaluable source of information for any plant scientist.
With one volume each year, this series keeps scientists and advanced students informed of the latest developments and results in all areas of the plant sciences. The present volume includes reviews on genetics, cell biology, physiology, comparative morphology, systematics, ecology, and vegetation science.
With one volume each year, this series keeps scientists and advanced students informed of the latest developments and results in all areas of the plant sciences. This latest volume includes reviews on plant physiology, biochemistry, genetics and genomics, forests, and ecosystems.
With one volume each year, this series keeps scientists and advanced students informed of the latest developments and results in all areas of the plant sciences. The present volume includes reviews on plant physiology, biochemistry, genetics, ecology, and ecosystems.
Time and change characterise the natural world, but in the biological sciences, by comparison with spatial measurements, time is a somewhat neglected parameter. Structural analyses of great depth and elegance have taken our spatial understa- ing to atomic dimensions, where distances are measured in A. To obtain temporal measurements appropriate to this spatial scale, dynamics on an attosecond time- 18 scale (10 s) are required in order to visualise physico-chemical mechanisms (Baum and Zewail 2006). For certain specific reactions of molecular components obtained from biological sources (e. g. the formation of carboxyhaemoglobin by the oxygenation of haemoglobin), probing of picosecond reactions are important (Brunori et al. 1999). In plants, femtosecond lifetimes of excited states of chlo- phyll are key to the photosynthetic light reaction. These considerations underline the extreme range of dynamic interactions that are necessitated for an understa- ing of the living organism, for if we include the long history of evolutionary change 9 (Fenchel 2002), an upper limit to our studies would extend over about 3. 8 x 10 years (Fig. 1). When the dynamic range of biological processes is to be considered, we must be aware that the system as it performs in vivo is a heterarchy with interactions of great complexity that occur, not merely within a level but between levels, and often across widely-separated time domains. The living state is better considered to be homeodynamic rather than homeostatic (Yates 1992; Lloyd et al. 2001)."
With one volume each year, this series keeps scientists and
advanced students informed of the latest developments and results
in all areas of the plant sciences.
With one volume each year, this series keeps scientists and advanced students informed of the latest developments and results in all areas of the plant sciences.The present volume includes reviews on genetics, cell biology, physiology, comparative morphology, systematics, ecology, and vegetation science.
Desiccation tolerance was essential when plants first began to conquer land, roughly 400 million years ago. While most desiccation-tolerant plants belong to basal phylogenetic taxa, this capacity has also evolved among some vascular plant species. In this volume renowned experts treat plant desiccation tolerance at the organismic as well as at the cellular level. The diversity of ecophysiological adaptations and acclimations of cyanobacteria, eukaryotic algae, mosses, and lichens is addressed in several chapters. The particular problems of vascular plants during dehydration/rehydration cycles resulting not only from their hydraulic architectures, but also from severe secondary stresses associated with the desiccated state are discussed. Based on the treatment of desiccation tolerance at the organismic level, a second section of the book is devoted to the cell biological level. It delineates the general concepts of functional genomics, epigenetics, genetics, molecular biology and the sensing and signalling networks of systems biology involved in dehydration/rehydration cycles. This book provides an invaluable compilation of current knowledge, which is a prerequisite for a better understanding of plant desiccation tolerance in natural as well as agro- and forest ecosystems where water is one of the most essential resources.
With one volume each year, this series keeps scientists and advanced students informed of the latest developments and results in all areas of the plant sciences. The present volume includes reviews on genetics, cell biology, physiology, ecology, and vegetation science.
This book addresses the responses of plants to salinity. Although salinity is a common environmental factor for marine organisms, for the majority of land plants high soil salinity is an environmental constraint that limits growth, productivity, and normal plant functions. Salinity is particularly widespread in arid/semiarid climates where crop production depends on irrigation. A comprehensive approach is taken in this book. After discussing salinity as an environmental soil factor and its global impact on ecosystems, plant responses are covered from the whole-plant level through metabolic changes to the underlying molecular and genetic mechanisms. In contrast to other books in this subject area, which focus on certain aspects of plant responses to salinity or are conference proceedings, this is the only comprehensive new book on this subject, written by experts in the field. The intended level of readership is graduate students and advanced researchers interested in environmental biology and specifically in the area of mechanisms of environment-plant interactions.
With one volume each year, this series keeps scientists and advanced students informed of the latest developments and results in all areas of the plant sciences. This latest volume includes reviews on plant physiology, biochemistry, genetics and genomics, forests, and ecosystems.
With one volume each year, this series keeps scientists and advanced students informed of the latest developments and results in all areas of the plant sciences. The present volume includes reviews on plant physiology, biochemistry, genetics and genomics, forests, and ecosystems. |
You may like...
|