Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
Increased energy prices and the growing attention on global warming are motivating the creation of economically viable alternatives to fossil fuels. Nanotechnologies have been recognized as one effective approach to solve energy problems. Therefore, to promote the improvement of research and to foster professional collaboration among researchers in energy-related nanotechnologies, we organized a symposium on "Nanotechnology for a Sustainable Energy Economy" as a part of the 243rd American Chemical Society National Meeting, which took place March 25-29, 2012 in San Diego, California, USA. Forty-four contributors from 12 countries presented their research works from industrial, university, and national laboratories in nanotechnology areas related to energy and fuel technologies. This ACS Symposium Series book was developed from this symposium. This book presents a very useful and readable collection of reviews and research papers in nanotechnologies for energy conversion, storage, and utilization, offering new results which are sure to be of interest to researchers, students, and engineers in the field of nanotechnologies and energy. The book focuses on the following topics: Li batteries (Chapters 1-4), supercapacitors (Chapter 5), dye-sensitized solar cells (Chapter 6), photocatalysis (Chapters 7-9), fuel cells (Chapter 10), electrocatalysis (Chapter 11), and electron beam lithography (Chapter 12). All 12 chapters were recruited from oral presentations at the symposium.
The guidelines of this textbook are numerous example programs, flux diagrams, schemes, and figures presenting the obtained results. Step by step, the authors explain how steady state Monte Carlo Simulation (MCS) and time resolved, so-called kinetic or dynamic Monte Carlo Simulation (KMCS), schemes, respectively, can be set up. Furthermore, examples of classical Molecular Dynamics Simulations (MDS) are included. In addressing the same type of problem by way off all these methods, the different schemes can directly be compared. For the example programs, they have chosen problems related to the adsorption of gas-phase species on surfaces (i.e. mainly lattice models related to gas-surface adsorption dynamics). Furthermore, the growth of deposits on grid surfaces has been address including fractal growth phenomena.
|
You may like...
|