Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This book highlights essential concepts in connection with the traditional bat algorithm and its recent variants, as well as its application to find optimal solutions for a variety of real-world engineering and medical problems. Today, swarm intelligence-based meta-heuristic algorithms are extensively being used to address a wide range of real-world optimization problems due to their adaptability and robustness. Developed in 2009, the bat algorithm (BA) is one of the most successful swarm intelligence procedures, and has been used to tackle optimization tasks for more than a decade. The BA's mathematical model is quite straightforward and easy to understand and enhance, compared to other swarm approaches. Hence, it has attracted the attention of researchers who are working to find optimal solutions in a diverse range of domains, such as N-dimensional numerical optimization, constrained/unconstrained optimization and linear/nonlinear optimization problems. Along with the traditional BA, its enhanced versions are now also being used to solve optimization problems in science, engineering and medical applications around the globe.
The aim of this book is to outline the concept of entropy, various types of entropies and their implementation to evaluate a variety of biomedical signals/images. The book emphasizes various entropy-based image pre-processing methods which are essential for the development of suitable computerized examination systems. The recent research works on biomedical signal evaluation confirms that signal analysis provides vital information regarding the physiological condition of the patient, and the efficient evaluation of these signals can help to diagnose the nature and the severity of the disease. This book emphasizes various entropy-based image pre-processing methods which are essential for the development of suitable computerized examination systems for the analysis of biomedical images recorded with a variety of modalities. The work discusses the image pro-processing methods with the Entropies, such as Kapur, Tsallis, Shannon and Fuzzy on a class of RGB-scaled and gray-scaled medical pictures. The performance of the proposed technique is justified with the help of suitable case studies, which involves x-ray image analysis, MRI analysis and CT analysis. This book is intended for medical signal/image analysts, undergraduate and postgraduate students, researchers, and medical scientists interested in biomedical data evaluation.
This book comprehensively reviews the various automated and semi-automated signal and image processing techniques, as well as deep-learning-based image analysis techniques, used in healthcare diagnostics. It highlights a range of data pre-processing methods used in signal processing for effective data mining in remote healthcare, and discusses pre-processing using filter techniques, noise removal, and contrast-enhanced methods for improving image quality. The book discusses the status quo of artificial intelligence in medical applications, as well as its future. Further, it offers a glimpse of feature extraction methods for reducing dimensionality and extracting discriminatory information hidden in biomedical signals. Given its scope, the book is intended for academics, researchers and practitioners interested in the latest real-world technological innovations.
This book highlights essential concepts in connection with the traditional bat algorithm and its recent variants, as well as its application to find optimal solutions for a variety of real-world engineering and medical problems. Today, swarm intelligence-based meta-heuristic algorithms are extensively being used to address a wide range of real-world optimization problems due to their adaptability and robustness. Developed in 2009, the bat algorithm (BA) is one of the most successful swarm intelligence procedures, and has been used to tackle optimization tasks for more than a decade. The BA's mathematical model is quite straightforward and easy to understand and enhance, compared to other swarm approaches. Hence, it has attracted the attention of researchers who are working to find optimal solutions in a diverse range of domains, such as N-dimensional numerical optimization, constrained/unconstrained optimization and linear/nonlinear optimization problems. Along with the traditional BA, its enhanced versions are now also being used to solve optimization problems in science, engineering and medical applications around the globe.
|
You may like...
X-Kit Presteer Essensiele Verwysings…
M Peacock, R. Scheepers, …
Paperback
(2)
|