Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 10 of 10 matches in All Departments
This volume is to be regarded as the fifth in the series of Harish-Chandra's collected papers, continuing the four volumes already published by Springer-Verlag. Because of manifold illnesses in the last ten years of his life, a large part of Harish-Chandra's work remained unpublished. The present volume deals with those unpublished manuscripts involving real groups, and includes only those pertaining to the theorems which Harish-Chandra had announced without proofs. An attempt has been made by the volume editors to bring out this material in a more coherent form than in the handwritten manuscripts, although nothing essentially new has been added and editorial comments are kept to a minimum. The papers deal with several topics: characters on non-connected real groups, Fourier transforms of orbital integrals, Whittaker theory, and supertempered characters. The generality of Harish-Chandra's results in these papers far exceeds anything in print. The volume will be of great interest to all mathematicians interested in Lie groups, and all who have an interest in the opus of a twentieth century giant. Harish-Chandra was a great mathematician, perhaps one of the greatest of the second half of the twentieth century.
This is a collection of essays based on lectures that author has given on various occasions on foundation of quantum theory, symmetries and representation theory, and the quantum theory of the superworld created by physicists. The lectures are linked by a unifying theme: how the quantum world and superworld appear under the lens of symmetry and supersymmetry. In the world of ultra-small times and distances such as the Planck length and Planck time, physicists believe no measurements are possible and so the structure of spacetime itself is an unkown that has to be first understood. There have been suggestions (Volovich hypothesis) that world geometry at such energy regimes is non-archimedian and some of the lectures explore the consequences of such a hypothesis. Ultimately, symmetries and supersymmetries are described by the representation of groups and supergroups. The author's interest in representation is a lifelong one and evolved slowly, and owes a great deal to conversations and discussions he had with George Mackey and Harish-Chandra. The book concludes with a retrospective look at these conversations.
This book has grown out of a set of lecture notes I had prepared for a course on Lie groups in 1966. When I lectured again on the subject in 1972, I revised the notes substantially. It is the revised version that is now appearing in book form. The theory of Lie groups plays a fundamental role in many areas of mathematics. There are a number of books on the subject currently available -most notably those of Chevalley, Jacobson, and Bourbaki-which present various aspects of the theory in great depth. However, 1 feei there is a need for a single book in English which develops both the algebraic and analytic aspects of the theory and which goes into the representation theory of semi simple Lie groups and Lie algebras in detail. This book is an attempt to fiii this need. It is my hope that this book will introduce the aspiring graduate student as well as the nonspecialist mathematician to the fundamental themes of the subject. I have made no attempt to discuss infinite-dimensional representations. This is a very active field, and a proper treatment of it would require another volume (if not more) of this size. However, the reader who wants to take up this theory will find that this book prepares him reasonably well for that task."
From the Preface by V. S. VARADARAJAN: "These volumes of the Collected Papers of Harish-Chandra are being brought out in response to a widespread feeling in the mathematical community that they would immensely benefit scholars and research workers, especially those in analysis, representation theory, arithmetic, mathematical physics, and other related areas. lt is hoped that in addition to making his contributions more accessible by collecting them in one place, these volumes would help focus renewed attention on his ideas and methods as well as lend additional perspective to them." The papers are arranged chronologically, Volume I collects Harish-Chandra's articles written between 1944 and 1954.
The present work is the first volume of a substantially enlarged version of the mimeographed notes of a course of lectures first given by me in the Indian Statistical Institute, Calcutta, India, during 1964-65. When it was suggested that these lectures be developed into a book, I readily agreed and took the opportunity to extend the scope of the material covered. No background in physics is in principle necessary for understand ing the essential ideas in this work. However, a high degree of mathematical maturity is certainly indispensable. It is safe to say that I aim at an audience composed of professional mathematicians, advanced graduate students, and, hopefully, the rapidly increasing group of mathematical physicists who are attracted to fundamental mathematical questions. Over the years, the mathematics of quantum theory has become more abstract and, consequently, simpler. Hilbert spaces have been used from the very beginning and, after Weyl and Wigner, group representations have come in conclusively. Recent discoveries seem to indicate that the role of group representations is destined for further expansion, not to speak of the impact of the theory of several complex variables and function-space analysis. But all of this pertains to the world of interacting subatomic particles; the more modest view of the microscopic world presented in this book requires somewhat less. The reader with a knowledge of abstract integration, Hilbert space theory, and topological groups will find the going easy."
This book has grown out of a set of lecture notes I had prepared for a course on Lie groups in 1966. When I lectured again on the subject in 1972, I revised the notes substantially. It is the revised version that is now appearing in book form. The theory of Lie groups plays a fundamental role in many areas of mathematics. There are a number of books on the subject currently available -most notably those of Chevalley, Jacobson, and Bourbaki-which present various aspects of the theory in great depth. However, 1 feei there is a need for a single book in English which develops both the algebraic and analytic aspects of the theory and which goes into the representation theory of semi simple Lie groups and Lie algebras in detail. This book is an attempt to fiii this need. It is my hope that this book will introduce the aspiring graduate student as well as the nonspecialist mathematician to the fundamental themes of the subject. I have made no attempt to discuss infinite-dimensional representations. This is a very active field, and a proper treatment of it would require another volume (if not more) of this size. However, the reader who wants to take up this theory will find that this book prepares him reasonably well for that task."
Supersymmetry was created by the physicists in the 1970's to give a unified treatment of fermions and bosons, the basic constituents of matter. Since then its mathematical structure has been recognized as that of a new development in geometry, and mathematicians have busied themselves with exploring this aspect. This volume collects recent advances in this field, both from a physical and a mathematical point of view, with an accent on a rigorous treatment of the various questions raised.
Available for the first time in soft cover, this book is a classic on the foundations of quantum theory. It examines the subject from a point of view that goes back to Heisenberg and Dirac and whose definitive mathematical formulation is due to von Neumann. This view leads most naturally to the fundamental questions that are at the basis of all attempts to understand the world of atomic and subatomic particles.
Now in paperback, this graduate-level textbook is an excellent introduction to the representation theory of semi-simple Lie groups. Professor Varadarajan emphasizes the development of central themes in the context of special examples. He begins with an account of compact groups and discusses the Harish-Chandra modules of SL(2,R) and SL(2,C). Subsequent chapters introduce the Plancherel formula and Schwartz spaces, and show how these lead to the Harish-Chandra theory of Eisenstein integrals. The final sections consider the irreducible characters of semi-simple Lie groups, and include explicit calculations of SL(2,R). The book concludes with appendices sketching some basic topics and with a comprehensive guide to further reading. This superb volume is highly suitable for students in algebra and analysis, and for mathematicians requiring a readable account of the topic.
|
You may like...
Heart Of A Strong Woman - From Daveyton…
Xoliswa Nduneni-Ngema, Fred Khumalo
Paperback
Shackled - One Woman's Dramatic Triumph…
Mariam Ibraheem, Eugene Bach
Paperback
|