![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
Accosiative rings and algebras are very interesting algebraic structures. In a strict sense, the theory of algebras (in particular, noncommutative algebras) originated fromasingleexample, namelythequaternions, createdbySirWilliamR.Hamilton in1843. Thiswasthe?rstexampleofanoncommutative"numbersystem." During thenextfortyyearsmathematiciansintroducedotherexamplesofnoncommutative algebras, began to bring some order into them and to single out certain types of algebras for special attention. Thus, low-dimensional algebras, division algebras, and commutative algebras, were classi?ed and characterized. The ?rst complete results in the structure theory of associative algebras over the real and complex ?elds were obtained by T.Molien, E.Cartan and G.Frobenius. Modern ring theory began when J.H.Wedderburn proved his celebrated cl- si?cation theorem for ?nite dimensional semisimple algebras over arbitrary ?elds. Twenty years later, E.Artin proved a structure theorem for rings satisfying both the ascending and descending chain condition which generalized Wedderburn structure theorem. The Wedderburn-Artin theorem has since become a corn- stone of noncommutative ring theory. The purpose of this book is to introduce the subject of the structure theory of associative rings. This book is addressed to a reader who wishes to learn this topic from the beginning to research level. We have tried to write a self-contained book which is intended to be a modern textbook on the structure theory of associative rings and related structures and will be accessible for independent study.
This second volume of this text covers the classical aspects of the theory of groups and their representations. It also offers a general introduction to the modern theory of representations including the representations of quivers and finite partially ordered sets and their applications to finite dimensional algebras. It reviews key recent developments in the theory of special ring classes including Frobenius, quasi-Frobenius, and others.
Accosiative rings and algebras are very interesting algebraic structures. In a strict sense, the theory of algebras (in particular, noncommutative algebras) originated fromasingleexample, namelythequaternions, createdbySirWilliamR.Hamilton in1843. Thiswasthe?rstexampleofanoncommutative"numbersystem." During thenextfortyyearsmathematiciansintroducedotherexamplesofnoncommutative algebras, began to bring some order into them and to single out certain types of algebras for special attention. Thus, low-dimensional algebras, division algebras, and commutative algebras, were classi?ed and characterized. The ?rst complete results in the structure theory of associative algebras over the real and complex ?elds were obtained by T.Molien, E.Cartan and G.Frobenius. Modern ring theory began when J.H.Wedderburn proved his celebrated cl- si?cation theorem for ?nite dimensional semisimple algebras over arbitrary ?elds. Twenty years later, E.Artin proved a structure theorem for rings satisfying both the ascending and descending chain condition which generalized Wedderburn structure theorem. The Wedderburn-Artin theorem has since become a corn- stone of noncommutative ring theory. The purpose of this book is to introduce the subject of the structure theory of associative rings. This book is addressed to a reader who wishes to learn this topic from the beginning to research level. We have tried to write a self-contained book which is intended to be a modern textbook on the structure theory of associative rings and related structures and will be accessible for independent study.
This second volume of this text covers the classical aspects of the theory of groups and their representations. It also offers a general introduction to the modern theory of representations including the representations of quivers and finite partially ordered sets and their applications to finite dimensional algebras. It reviews key recent developments in the theory of special ring classes including Frobenius, quasi-Frobenius, and others.
|
![]() ![]() You may like...
Faunal Heritage of Rajasthan, India…
B.K. Sharma, Seema Kulshreshtha, …
Hardcover
R7,138
Discovery Miles 71 380
Deep-Sea Pycnogonids and Crustaceans of…
Michel E. Hendrickx
Hardcover
R4,995
Discovery Miles 49 950
|