Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
This book is devoted to an investigation of some important problems of mod ern filtering theory concerned with systems of 'any nature being able to per ceive, store and process an information and apply it for control and regulation'. (The above quotation is taken from the preface to 27]). Despite the fact that filtering theory is l'argely worked out (and its major issues such as the Wiener-Kolmogorov theory of optimal filtering of stationary processes and Kalman-Bucy recursive filtering theory have become classical) a development of the theory is far from complete. A great deal of recent activity in this area is observed, researchers are trying consistently to generalize famous results, extend them to more broad classes of processes, realize and justify more simple procedures for processing measurement data in order to obtain more efficient filtering algorithms. As to nonlinear filter ing, it remains much as fragmentary. Here much progress has been made by R. L. Stratonovich and his successors in the area of filtering of Markov processes. In this volume an effort is made to advance in certain of these issues. The monograph has evolved over many years, coming of age by stages. First it was an impressive job of gathering together the bulk of the impor tant contributions to estimation theory, an understanding and moderniza tion of some of its results and methods, with the intention of applying them to recursive filtering problems."
The idea of optimization runs through most parts of control theory. The simplest optimal controls are preplanned (programmed) ones. The problem of constructing optimal preplanned controls has been extensively worked out in literature (see, e. g., the Pontrjagin maximum principle giving necessary conditions of preplanned control optimality). However, the concept of op timality itself has a restrictive character: it is limited by what one means under optimality in each separate case. The internal contradictoriness of the preplanned control optimality ("the better is the enemy of the good") yields that the practical significance of optimal preplanned controls proves to be not great: such controls are usually sensitive to unregistered disturbances (includ ing the round-off errors which are inevitable when computer devices are used for forming controls), as there is the effect of disturbance accumulation in the control process which makes controls to be of little use on large time inter vals. This gap is mainly provoked by oversimplified settings of optimization problems. The outstanding result of control theory established in the end of the first half of our century is that controls in feedback form ensure the weak sensitivity of closed loop systems with respect to "small" unregistered internal and external disturbances acting in them (here we do not need to discuss performance indexes, since the considered phenomenon is of general nature). But by far not all optimal preplanned controls can be represented in a feedback form."
One service mathematics has rendered the 'Bt mm, ... si j'avait su comment en revenir, human race. It has put common sense back je n'y serais point alIe.' Jules Verne where it belongs. on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it. O. Heavisidc Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
In this volume the investigations of filtering problems, a start on which has been made in 55], are being continued and are devoted to theoretical problems of processing stochastic fields. The derivation of the theory of processing stochastic fields is similar to that of the theory extensively developed for stochastic processes ('stochastic fields with a one-dimensional domain'). Nevertheless there exist essential distinctions between these cases making a construction of the theory for the multi-dimensional case in such a way difficult. Among these are the absence of the notion of the 'past-future' in the case of fields, which plays a fundamental role in constructing stochastic processes theory. So attempts to introduce naturally the notion of the causality (non-anticipativity) when synthesising stable filters designed for processing fields have not met with success. Mathematically, principal distinctions between multi-dimensional and one-dimensional cases imply that the set of roots of a multi-variable polyno mial does not necessary consist of a finite number of isolated points. From the main theorem of algebra it follows that in the one-dimensional case every poly nomial of degree n has just n roots (considering their multiplicity) in the com plex plane. As a consequence, in particular, an arbitrary rational function cents(."
The idea of optimization runs through most parts of control theory. The simplest optimal controls are preplanned (programmed) ones. The problem of constructing optimal preplanned controls has been extensively worked out in literature (see, e. g., the Pontrjagin maximum principle giving necessary conditions of preplanned control optimality). However, the concept of op timality itself has a restrictive character: it is limited by what one means under optimality in each separate case. The internal contradictoriness of the preplanned control optimality ("the better is the enemy of the good") yields that the practical significance of optimal preplanned controls proves to be not great: such controls are usually sensitive to unregistered disturbances (includ ing the round-off errors which are inevitable when computer devices are used for forming controls), as there is the effect of disturbance accumulation in the control process which makes controls to be of little use on large time inter vals. This gap is mainly provoked by oversimplified settings of optimization problems. The outstanding result of control theory established in the end of the first half of our century is that controls in feedback form ensure the weak sensitivity of closed loop systems with respect to "small" unregistered internal and external disturbances acting in them (here we do not need to discuss performance indexes, since the considered phenomenon is of general nature). But by far not all optimal preplanned controls can be represented in a feedback form."
In this volume the investigations of filtering problems, a start on which has been made in 55], are being continued and are devoted to theoretical problems of processing stochastic fields. The derivation of the theory of processing stochastic fields is similar to that of the theory extensively developed for stochastic processes ('stochastic fields with a one-dimensional domain'). Nevertheless there exist essential distinctions between these cases making a construction of the theory for the multi-dimensional case in such a way difficult. Among these are the absence of the notion of the 'past-future' in the case of fields, which plays a fundamental role in constructing stochastic processes theory. So attempts to introduce naturally the notion of the causality (non-anticipativity) when synthesising stable filters designed for processing fields have not met with success. Mathematically, principal distinctions between multi-dimensional and one-dimensional cases imply that the set of roots of a multi-variable polyno mial does not necessary consist of a finite number of isolated points. From the main theorem of algebra it follows that in the one-dimensional case every poly nomial of degree n has just n roots (considering their multiplicity) in the com plex plane. As a consequence, in particular, an arbitrary rational function cents(."
This book is devoted to an investigation of some important problems of mod ern filtering theory concerned with systems of 'any nature being able to per ceive, store and process an information and apply it for control and regulation'. (The above quotation is taken from the preface to 27]). Despite the fact that filtering theory is l'argely worked out (and its major issues such as the Wiener-Kolmogorov theory of optimal filtering of stationary processes and Kalman-Bucy recursive filtering theory have become classical) a development of the theory is far from complete. A great deal of recent activity in this area is observed, researchers are trying consistently to generalize famous results, extend them to more broad classes of processes, realize and justify more simple procedures for processing measurement data in order to obtain more efficient filtering algorithms. As to nonlinear filter ing, it remains much as fragmentary. Here much progress has been made by R. L. Stratonovich and his successors in the area of filtering of Markov processes. In this volume an effort is made to advance in certain of these issues. The monograph has evolved over many years, coming of age by stages. First it was an impressive job of gathering together the bulk of the impor tant contributions to estimation theory, an understanding and moderniza tion of some of its results and methods, with the intention of applying them to recursive filtering problems."
One service mathematics has rendered the 'Bt mm, ... si j'avait su comment en revenir, human race. It has put common sense back je n'y serais point alIe.' Jules Verne where it belongs. on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it. O. Heavisidc Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
|
You may like...
|