Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
This book is devoted to researchers and teachers, as well as graduate students, undergraduates and bachelors in engineering mechanics, nano-mechanics, nanomaterials, nanostructures and applied mathematics. It presents a collection of the latest developments in the field of nonlinear (chaotic) dynamics of mass distributed-parameter nanomechanical structures, providing a rigorous and comprehensive study of modeling nonlinear phenomena. It is written in a unique pedagogical style particularly suitable for independent study and self-education. In addition, the book achieves a good balance between Western and Eastern extensive studies of the mathematical problems of nonlinear vibrations of structural members.
From the reviews: "A unique feature of this book is the nice blend of engineering vividness and mathematical rigour. [...] The authors are to be congratulated for their valuable contribution to the literature in the area of theoretical thermoelasticity and vibration of plates." Journal of Sound and Vibration
This monograph, addressing researchers as well as engineers, is devoted to nonclassical thermoelastic modelling of the nonlinear dynamics of shells. Differential equations of different dimensionality and different type have to be combined and nonlinearities of different geometrical, physical or elasto-plastic categories are addressed. Special emphasis is given to the Bubnov--Galerkin method. It can be applied to many problems in the theory of plates and shells, even those with very complex geometries, holes and various boundary conditions. The authors made every effort to keep the text intelligible for both practitioners and graduate students, although they offer a rigorous treatment of both purely mathematical and numerical approaches presented so that the reader can understand, analyse and track the nonlinear dynamics of spatial systems (shells) with thermomechanical behaviours.
This book offers a valuable methodological approach to the state-of-the-art of the classical plate/shell mathematical models, exemplifying the vast range of mathematical models of nonlinear dynamics and statics of continuous mechanical structural members. The main objective highlights the need for further study of the classical problem of shell dynamics consisting of mathematical modeling, derivation of nonlinear PDEs, and of finding their solutions based on the development of new and effective numerical techniques. The book is designed for a broad readership of graduate students in mechanical and civil engineering, applied mathematics, and physics, as well as to researchers and professionals interested in a rigorous and comprehensive study of modeling non-linear phenomena governed by PDEs.
Among the theoretical methods for solving many problems of applied mathematics, physics, and technology, asymptotic methods often provide results that lead to obtaining more effective algorithms of numerical evaluation. Presenting the mathematical methods of perturbation theory, Introduction to Asymptotic Methods reviews the most important methods of singular perturbations within the scope of application of differential equations. The authors take a challenging and original approach based on the integrated mathematical-analytical treatment of various objects taken from interdisciplinary fields of mechanics, physics, and applied mathematics. This new hybrid approach will lead to results that cannot be obtained by standard theories in the field. Emphasizing fundamental elements of the mathematical modeling process, the book provides comprehensive coverage of asymptotic approaches, regular and singular perturbations, one-dimensional non-stationary non-linear waves, Pade approximations, oscillators with negative Duffing type stiffness, and differential equations with discontinuous nonlinearities. The book also offers a method of construction for canonical variables transformation in parametric form along with a number of examples and applications. The book is applications oriented and features results and literature citations that have not been seen in the Western Scientific Community. The authors emphasize the dynamics of the development of perturbation methods and present the development of ideas associated with this wide field of research.
This book focuses on the computational analysis of nonlinear vibrations of structural members (beams, plates, panels, shells), where the studied dynamical problems can be reduced to the consideration of one spatial variable and time. The reduction is carried out based on a formal mathematical approach aimed at reducing the problems with infinite dimension to finite ones. The process also includes a transition from governing nonlinear partial differential equations to a set of finite number of ordinary differential equations.Beginning with an overview of the recent results devoted to the analysis and control of nonlinear dynamics of structural members, placing emphasis on stability, buckling, bifurcation and deterministic chaos, simple chaotic systems are briefly discussed. Next, bifurcation and chaotic dynamics of the Euler-Bernoulli and Timoshenko beams including the geometric and physical nonlinearity as well as the elastic-plastic deformations are illustrated. Despite the employed classical numerical analysis of nonlinear phenomena, the various wavelet transforms and the four Lyapunov exponents are used to detect, monitor and possibly control chaos, hyper-chaos, hyper-hyper-chaos and deep chaos exhibited by rectangular plate-strips and cylindrical panels.The book is intended for post-graduate and doctoral students, applied mathematicians, physicists, teachers and lecturers of universities and companies dealing with a nonlinear dynamical system, as well as theoretically inclined engineers of mechanical and civil engineering.
This book is devoted to researchers and teachers, as well as graduate students, undergraduates and bachelors in engineering mechanics, nano-mechanics, nanomaterials, nanostructures and applied mathematics. It presents a collection of the latest developments in the field of nonlinear (chaotic) dynamics of mass distributed-parameter nanomechanical structures, providing a rigorous and comprehensive study of modeling nonlinear phenomena. It is written in a unique pedagogical style particularly suitable for independent study and self-education. In addition, the book achieves a good balance between Western and Eastern extensive studies of the mathematical problems of nonlinear vibrations of structural members.
From the reviews: "A unique feature of this book is the nice blend of engineering vividness and mathematical rigour. [...] The authors are to be congratulated for their valuable contribution to the literature in the area of theoretical thermoelasticity and vibration of plates." Journal of Sound and Vibration
|
You may like...
Surfacing - On Being Black And Feminist…
Desiree Lewis, Gabeba Baderoon
Paperback
|