0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (3)
  • -
Status
Brand

Showing 1 - 3 of 3 matches in All Departments

Machine Learning with PyTorch and Scikit-Learn - Develop machine learning and deep learning models with Python (Paperback):... Machine Learning with PyTorch and Scikit-Learn - Develop machine learning and deep learning models with Python (Paperback)
Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili, Dmytro Dzhulgakov
R1,553 Discovery Miles 15 530 Ships in 10 - 15 working days

This book of the bestselling and widely acclaimed Python Machine Learning series is a comprehensive guide to machine and deep learning using PyTorch's simple to code framework. Purchase of the print or Kindle book includes a free eBook in PDF format. Key Features Learn applied machine learning with a solid foundation in theory Clear, intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover PyTorch, transformers, XGBoost, graph neural networks, and best practices Book DescriptionMachine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself. Why PyTorch? PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments. What you will learn Explore frameworks, models, and techniques for machines to 'learn' from data Use scikit-learn for machine learning and PyTorch for deep learning Train machine learning classifiers on images, text, and more Build and train neural networks, transformers, and boosting algorithms Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is forIf you have a good grasp of Python basics and want to start learning about machine learning and deep learning, then this is the book for you. This is an essential resource written for developers and data scientists who want to create practical machine learning and deep learning applications using scikit-learn and PyTorch. Before you get started with this book, you'll need a good understanding of calculus, as well as linear algebra.

Python Machine Learning - Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition... Python Machine Learning - Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition (Paperback, 3rd Revised edition)
Sebastian Raschka, Vahid Mirjalili
R1,552 Discovery Miles 15 520 Ships in 10 - 15 working days

Applied machine learning with a solid foundation in theory. Revised and expanded for TensorFlow 2, GANs, and reinforcement learning. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key Features Third edition of the bestselling, widely acclaimed Python machine learning book Clear and intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover TensorFlow 2, Generative Adversarial Network models, reinforcement learning, and best practices Book DescriptionPython Machine Learning, Third Edition is a comprehensive guide to machine learning and deep learning with Python. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and working examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, Raschka and Mirjalili teach the principles behind machine learning, allowing you to build models and applications for yourself. Updated for TensorFlow 2.0, this new third edition introduces readers to its new Keras API features, as well as the latest additions to scikit-learn. It's also expanded to cover cutting-edge reinforcement learning techniques based on deep learning, as well as an introduction to GANs. Finally, this book also explores a subfield of natural language processing (NLP) called sentiment analysis, helping you learn how to use machine learning algorithms to classify documents. This book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments. What you will learn Master the frameworks, models, and techniques that enable machines to 'learn' from data Use scikit-learn for machine learning and TensorFlow for deep learning Apply machine learning to image classification, sentiment analysis, intelligent web applications, and more Build and train neural networks, GANs, and other models Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is forIf you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential resource. Written for developers and data scientists who want to create practical machine learning and deep learning code, this book is ideal for anyone who wants to teach computers how to learn from data.

Python Machine Learning - (Paperback, 2nd Revised edition): Sebastian Raschka, Vahid Mirjalili Python Machine Learning - (Paperback, 2nd Revised edition)
Sebastian Raschka, Vahid Mirjalili
R1,244 Discovery Miles 12 440 Ships in 10 - 15 working days

Unlock modern machine learning and deep learning techniques with Python by using the latest cutting-edge open source Python libraries. About This Book * Second edition of the bestselling book on Machine Learning * A practical approach to key frameworks in data science, machine learning, and deep learning * Use the most powerful Python libraries to implement machine learning and deep learning * Get to know the best practices to improve and optimize your machine learning systems and algorithms Who This Book Is For If you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential and unmissable resource. Written for developers and data scientists who want to create practical machine learning and deep learning code, this book is ideal for developers and data scientists who want to teach computers how to learn from data. What You Will Learn * Understand the key frameworks in data science, machine learning, and deep learning * Harness the power of the latest Python open source libraries in machine learning * Explore machine learning techniques using challenging real-world data * Master deep neural network implementation using the TensorFlow library * Learn the mechanics of classification algorithms to implement the best tool for the job * Predict continuous target outcomes using regression analysis * Uncover hidden patterns and structures in data with clustering * Delve deeper into textual and social media data using sentiment analysis In Detail Machine learning is eating the software world, and now deep learning is extending machine learning. Understand and work at the cutting edge of machine learning, neural networks, and deep learning with this second edition of Sebastian Raschka's bestselling book, Python Machine Learning. Thoroughly updated using the latest Python open source libraries, this book offers the practical knowledge and techniques you need to create and contribute to machine learning, deep learning, and modern data analysis. Fully extended and modernized, Python Machine Learning Second Edition now includes the popular TensorFlow deep learning library. The scikit-learn code has also been fully updated to include recent improvements and additions to this versatile machine learning library. Sebastian Raschka and Vahid Mirjalili's unique insight and expertise introduce you to machine learning and deep learning algorithms from scratch, and show you how to apply them to practical industry challenges using realistic and interesting examples. By the end of the book, you'll be ready to meet the new data analysis opportunities in today's world. If you've read the first edition of this book, you'll be delighted to find a new balance of classical ideas and modern insights into machine learning. Every chapter has been critically updated, and there are new chapters on key technologies. You'll be able to learn and work with TensorFlow more deeply than ever before, and get essential coverage of the Keras neural network library, along with the most recent updates to scikit-learn. Style and Approach Python Machine Learning Second Edition takes a practical, hands-on coding approach so you can learn about machine learning by coding with Python. This book moves fluently between the theoretical principles of machine learning and the practical details of implementation with Python.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Poor Things
Emma Stone, Mark Ruffalo, … DVD R343 Discovery Miles 3 430
Koh-I-Noor Polycolor Artist Colour…
R3,650 Discovery Miles 36 500
Speck Koi Filter Medium (3 X 5mm)(40kg)
R772 Discovery Miles 7 720
Kenwood Steam Iron with Auto Shut Off…
R634 Discovery Miles 6 340
Milex 25L Air Chef
R2,500 R2,000 Discovery Miles 20 000
Loot
Nadine Gordimer Paperback  (2)
R205 R164 Discovery Miles 1 640
Gym Towel & Bag
R129 R81 Discovery Miles 810
Sterile Wound Dressing
R5 Discovery Miles 50
Double Sided Wallet
R91 Discovery Miles 910
Angelcare Nappy Bin Refills
R165 R145 Discovery Miles 1 450

 

Partners