Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
Heating and Cooling with Ground-Source Heat Pumps in Cold and Moderate Climates: Design Principles, Potential Applications and Case Studies focuses on applications and cases studies of ground-source heat pumps in moderate and cold climates. It details technical aspects (such as materials, thermal fluid carriers and pumping, and drilling/trenching technologies), as well as the most common and uncommon application fields for basic system configurations. The principles of system integrations and applications in moderate and cold climates (such as hybrid, solar-assisted, thermo-syphon, foundation, mines, snow melting, district heating and cooling ground-source heat pump systems, etc.) are also presented, each followed by case studies. Based on the author's more than 30 years of technical experience Discusses ground-source heat pump technologies that can be successfully applied in moderate and cold climates Presents several case studies, including successful energy results, as well as the main lessons learned This work is aimed at designers of HVAC systems, as well as geological, mechanical, and chemical engineers implementing environmentally-friendly heating and cooling technologies for buildings.
Heating and Cooling with Ground-Source Heat Pumps in Cold and Moderate Climates: Fundamentals and Basic Concepts covers fundamentals and design principles of vertical and horizontal indirect and direct expansion closed-loop, as well as ground and surface-water ground-source heat pump systems. It explains the thermodynamic aspects of mechanical and thermochemical compression cycles of geothermal heat pumps, and describes the energetic, economic, and environmental aspects associated with the use of ground-source heat pump systems for heating and cooling residential and commercial/institutional buildings in moderate and cold climates. Based on the author's more than 30 years of technical experience Focuses on ground-source heat pump technologies that can be successfully applied in moderate and cold climates Discusses technical aspects as well as the most common and uncommon application fields of basic system configurations This work is aimed at designers of HVAC systems, as well as geological, mechanical, and chemical engineers implementing environmentally-friendly heating and cooling technologies for buildings.
This book discusses conventional as well as unconventional wood drying technologies. It covers fundamental thermophysical and energetic aspects and integrates two complex thermodynamic systems, conventional kilns and heat pumps, aimed at improving the energy performance of dryers and the final quality of dried lumber. It discusses advanced components, kiln energy requirements, modeling, and software and emphasizes dryer/heat pump optimum coupling, control, and energy efficiency. Problems are included in most chapters as practical, numerical examples for process and system/components calculation and design. The book presents promising advancements and R&D challenges and future requirements.
Drying of solids is one of the most common, complex, and energy-intensive industrial processes. Conventional dryers offer limited opportunities to increase energy efficiency. Heat pump dryers are more energy and cost effective, as they can recycle drying thermal energy and reduce CO2, particulate, and VOC emissions due to drying. This book provides an introduction to the technology and current best practices and aims to increase the successful industrial implementation of heat pump- assisted dryers. It enables the reader to engage confidently with the technology and provides a wealth of information on theories, current practices, and future directions of the technology. It emphasizes several new design concepts and operating and control strategies, which can be applied to improve the economic and environmental efficiency of the drying process. It answers questions about risks, advantages vs. disadvantages, and impediments and offers solutions to current problems. Discusses heat pump technology in general and its present and future challenges. Describes interesting and promising innovations in drying food, agricultural, and wood products with various heat pump technologies. Treats several technical aspects, from modeling and simulation of drying processes to industrial applications. Emphasizes new design concepts and operating and control strategies to improve the efficiency of the drying process.
This book discusses conventional as well as unconventional wood drying technologies. It covers fundamental thermophysical and energetic aspects and integrates two complex thermodynamic systems, conventional kilns and heat pumps, aimed at improving the energy performance of dryers and the final quality of dried lumber. It discusses advanced components, kiln energy requirements, modeling, and software and emphasizes dryer/heat pump optimum coupling, control, and energy efficiency. Problems are included in most chapters as practical, numerical examples for process and system/components calculation and design. The book presents promising advancements and R&D challenges and future requirements.
Drying of solids is one of the most common, complex, and energy-intensive industrial processes. Conventional dryers offer limited opportunities to increase energy efficiency. Heat pump dryers are more energy and cost effective, as they can recycle drying thermal energy and reduce CO2, particulate, and VOC emissions due to drying. This book provides an introduction to the technology and current best practices and aims to increase the successful industrial implementation of heat pump- assisted dryers. It enables the reader to engage confidently with the technology and provides a wealth of information on theories, current practices, and future directions of the technology. It emphasizes several new design concepts and operating and control strategies, which can be applied to improve the economic and environmental efficiency of the drying process. It answers questions about risks, advantages vs. disadvantages, and impediments and offers solutions to current problems. Discusses heat pump technology in general and its present and future challenges. Describes interesting and promising innovations in drying food, agricultural, and wood products with various heat pump technologies. Treats several technical aspects, from modeling and simulation of drying processes to industrial applications. Emphasizes new design concepts and operating and control strategies to improve the efficiency of the drying process.
|
You may like...
Snyman's Criminal Law
Kallie Snyman, Shannon Vaughn Hoctor
Paperback
|